On slanted matrices, frames, and sampling

Akram Aldroubi Anatoly Baskakov
Ilya Krishtal

1Department of Mathematics
Vanderbilt University

2Department of Applied Mathematics and Mechanics
Voronezh State University

3Department of Mathematical Sciences
Northern Illinois University

August 27, 2007

SPIE Optics + Photonics 2007: Wavelets XII
Outline

1. Notation and Motivation
 - Sampling in shift invariant spaces
 - Sampling operator (matrix)

2. Main result

3. Conclusions
 - Bonus Results

4. References
Sampling in shift invariant spaces

- \(\Phi = \{\varphi_1, \ldots, \varphi_n\} \) - generator, nice function(s);
Sampling in shift invariant spaces

- $\Phi = \{\varphi_1, \ldots, \varphi_n\}$ - generator, nice function(s);
- $V^p(\Phi)$ - closed linear span of the translates in ℓ^p;
Sampling in shift invariant spaces

- $\Phi = \{\varphi_1, \ldots, \varphi_n\}$ - generator, nice function(s);
- $\mathcal{V}^p(\Phi)$ - closed linear span of the translates in ℓ^p;
- X - a set of sampling;
Sampling in shift invariant spaces

- \(\Phi = \{ \varphi_1, \ldots, \varphi_n \} \) - generator, nice function(s);
- \(V^p(\Phi) \) - closed linear span of the translates in \(\ell^p \);
- \(X \) - a set of sampling;
- \(M \) - average samplers;
Sampling in shift invariant spaces

- $\Phi = \{\varphi_1, \ldots, \varphi_n\}$ - generator, nice function(s);
- $V^p(\Phi)$ - closed linear span of the translates in ℓ^p;
- X - a set of sampling;
- M - average samplers;
- (Φ, X, M) - sampling model.
Sampling in shift invariant spaces

- $\Phi = \{\varphi_1, \ldots, \varphi_n\}$ - generator, nice function(s);
- $V^p(\Phi)$ - closed linear span of the translates in ℓ^p;
- X - a set of sampling;
- M - average samplers;
- (Φ, X, M) - sampling model.

Definition

A sampling model is **stable** if

$$\| (f \ast M)(X) \|_p \sim \| f \|_p \quad \text{for all } f \in V^p(\Phi). \quad (1.1)$$
Sampling in shift invariant spaces

- $\Phi = \{\varphi_1, \ldots, \varphi_n\}$ - generator, nice function(s);
- $V^p(\Phi)$ - closed linear span of the translates in ℓ^p;
- X - a set of sampling;
- M - average samplers;
- (Φ, X, M) - sampling model.

Definition

A sampling model is **stable** if

$$\| (f * M)(X) \|_p \sim \| f \|_p \quad \text{for all} \ f \in V^p(\Phi). \ (1.1)$$

Stability is preserved by all reasonable perturbations for a fixed p, [AK, AAK].
Sampling in shift invariant spaces

- $\Phi = \{\varphi_1, \ldots, \varphi_n\}$ - generator, nice function(s);
- $V^p(\Phi)$ - closed linear span of the translates in ℓ^p;
- X - a set of sampling;
- M - average samplers;
- (Φ, X, M) - sampling model.

Definition

A sampling model is **stable** if

$$\|(f \star M)(X)\|_p \sim \|f\|_p \quad \text{for all } f \in V^p(\Phi). \quad (1.1)$$

Stability is preserved by all reasonable perturbations for a fixed p, [AK, AAK].

What if we change p?
Sampling operator (matrix)

The sampling operator (matrix) A is given by $(\Phi_k \ast M)(X)$; in the simplest case, $a_{jk} = \varphi(x_j - k)$.

It is known that (1.1) is equivalent to $\|A c\|_p \sim \|c\|_p$ for all $c \in \ell_p$. (1.2)

Does (1.2) remain valid for all p?

Is A automatically left invertible, i.e., can the dual frame method be used for reconstruction?
The sampling operator (matrix) A is given by $(\Phi_k \ast M)(X)$; in the simplest case, $a_{jk} = \varphi(x_j - k)$.
The sampling operator (matrix) \mathcal{A} is given by $(\Phi_k * M)(X)$; in the simplest case, $a_{jk} = \varphi(x_j - k)$.

\[
\begin{pmatrix}
 & & \\
 & 0 & \\
 0 & & 0
\end{pmatrix}
\]

It is known that (1.1) is equivalent to

\[\|\mathcal{A}c\|_p \sim \|c\|_p \quad \text{for all } c \in \ell^p. \quad (1.2)\]
The sampling operator (matrix) A is given by $(\Phi_k \ast M)(X)$; in the simplest case, $a_{jk} = \varphi(x_j - k)$.

It is known that (1.1) is equivalent to

$$\|A c\|_p \sim \|c\|_p \quad \text{for all } c \in \ell^p.$$ \hspace{1cm} (1.2)

Does (1.2) remain valid for all p?
The sampling operator (matrix) \mathbf{A} is given by $(\Phi_k * M)(X)$; in the simplest case, $a_{jk} = \varphi(x_j - k)$.

It is known that (1.1) is equivalent to

$$\|\mathbf{A}c\|_p \sim \|c\|_p \quad \text{for all } c \in \ell^p. \quad (1.2)$$

Does (1.2) remain valid for all p?

Is \mathbf{A} automatically left invertible, i.e., can the dual frame method be used for reconstruction?
Theorem (ABK)

Let A be a matrix with sufficient off-slant decay and satisfying

(1.2) *for some* $p \in [1, \infty]$. *Then* A *satisfies* (1.2) *for all* $p \in [1, \infty]$. *Moreover, a universal* lower bound exists and can be estimated.
Main Result

Theorem (ABK)

Let A be a matrix with sufficient off-slant decay and satisfying (1.2) for some $p \in [1, \infty]$. Then A satisfies (1.2) for all $p \in [1, \infty]$. Moreover, a universal lower bound exists and can be estimated.

Proof.
Main Result

Theorem (ABK)

Let A be a matrix with sufficient off-slant decay and satisfying (1.2) for some $p \in [1, \infty]$. Then A satisfies (1.2) for all $p \in [1, \infty]$. Moreover, a universal lower bound exists and can be estimated.

Proof.

$2 \to p$. Very easy in a Hilbert space:

$$\|c\|^2 \sim \langle Ac, Ac \rangle = \langle A^*Ac, c \rangle$$

implies invertibility of A^*A in ℓ^2, invertibility in ℓ^p follows from Wiener’s Lemma, and, hence, A is left invertible in all ℓ^p.
Theorem (ABK)

Let \mathbb{A} be a matrix with sufficient off-slant decay and satisfying (1.2) for some $p \in [1, \infty]$. Then \mathbb{A} satisfies (1.2) for all $p \in [1, \infty]$. Moreover, a universal lower bound exists and can be estimated.

Proof.

$2 \to p$. Very easy in a Hilbert space:

$$\|c\|^2 \sim \langle \mathbb{A}c, \mathbb{A}c \rangle = \langle \mathbb{A}^*\mathbb{A}c, c \rangle$$

implies invertibility of $\mathbb{A}^*\mathbb{A}$ in ℓ^2, invertibility in ℓ^p follows from Wiener’s Lemma, and, hence, \mathbb{A} is left invertible in all ℓ^p.

General case. Very hard: over 5 pages of proof. Involves $p \to \infty$, $\infty \to p$, and Cesaro means. \mathbb{A}^* is NOT used.
Conclusions

- If (Φ, X, M) is a nicely localized sampling model which is stable for some p, then it is stable for all p.
Conclusions

- If (Φ, X, M) is a nicely localized sampling model which is stable for some p, then it is stable for all p.
- If G is a nicely localized p-frame for some p, then it is a Banach frame for all p.

Other applications: differential and difference equations, filter banks, etc.
Conclusions

- If \((Φ, X, M)\) is a nicely localized sampling model which is stable for some \(p\), then it is stable for all \(p\).
- If \(G\) is a nicely localized \(p\)-frame for some \(p\), then it is a Banach frame for all \(p\).
- Other applications: differential and difference equations, filter banks, etc.
Conclusions

- If \((\Phi, X, M)\) is a nicely localized sampling model which is stable for some \(p\), then it is stable for all \(p\).
- If \(G\) is a nicely localized \(p\)-frame for some \(p\), then it is a Banach frame for all \(p\).
- Other applications: differential and difference equations, filter banks, etc.
Explicit lower (sampling) bounds for low order B-splines can be obtained.
Explicit lower (sampling) bounds for low order B-splines can be obtained.

For first order: \(1 - \gamma(X) \) in \(\ell^\infty \).
Explicit lower (sampling) bounds for low order B-splines can be obtained.

For first order: \(1 - \gamma(X)\) in \(\ell^\infty\).

For second order: \(\frac{1}{2}(1 - \gamma^2(X))\) in \(\ell^\infty\).
References

The papers are available via http://www.math.niu.edu/~krishtal/ or from ArXiV.