Main Tools/Classical Results
Properties of Digraph Spectra
Some digraph spectra
Tournaments and their Spectral Properties
Totally nonnegative (ordered) digraphs
Cospectral Digraphs
Energy of Digraphs
Laplacian Eigenvalues of Digraphs

Spectra of Digraphs

Richard A. Brualdi

University of Wisconsin-Madison

LA’09, Northern Illinois University
DeKalb, August 12–14 2009
Spectra of Digraphs

Richard A. Brualdi

University of Wisconsin-Madison

LA’09, Northern Illinois University
DeKalb, August 12–14 2009

Dedicated to Biswa Datta on his recent birthday #68
Main Tools/Classical Results
Properties of Digraph Spectra
Some digraph spectra
Tournaments and their Spectral Properties
Totally nonnegative (ordered) digraphs
Cospectral Digraphs
Energy of Digraphs
Laplacian Eigenvalues of Digraphs
Digraph D: set V of vertices, and set E of edges which are ordered pairs of not necessarily distinct vertices. So loops are allowed.

An edge (u, v) ($u \rightarrow v$) contributes 1 to the outdegree of u and 1 to the indegree of v. A loop contributes 1 to both the indegree and outdegree of u.

So we have an outdegree vector $R = (r_1, r_2, \ldots, r_n)$ and indegree vector $S = (s_1, s_2, \ldots, s_n)$ where

$$r_1 + r_2 + \cdots + r_n = s_1 + s_2 + \cdots + s_n.$$
Digraph D: set V of **vertices**, and set E of **edges** which are ordered pairs of not necessarily distinct vertices. So loops are allowed.

An edge (u, v) ($u \rightarrow v$) contributes 1 to the **outdegree** of u and 1 to the **indegree** of v. A loop contributes 1 to both the indegree and outdegree of u.

So we have an **outdegree vector** $R = (r_1, r_2, \ldots, r_n)$ and **indegree vector** $S = (s_1, s_2, \ldots, s_n)$ where

$$r_1 + r_2 + \cdots + r_n = s_1 + s_2 + \cdots + s_n.$$
Digraph D: set V of *vertices*, and set E of *edges* which are ordered pairs of not necessarily distinct vertices. So loops are allowed.

An edge (u, v) $(u \rightarrow v)$ contributes 1 to the *outdegree* of u and 1 to the *indegree* of v. A loop contributes 1 to both the indegree and outdegree of u.

So we have an **outdegree vector** $R = (r_1, r_2, \ldots, r_n)$ and **indegree vector** $S = (s_1, s_2, \ldots, s_n)$ where

$$r_1 + r_2 + \cdots + r_n = s_1 + s_2 + \cdots + s_n.$$
Order the vertices in some way: v_1, v_2, \ldots, v_n. The adjacency matrix is the $(0, 1)$-matrix $A = [a_{ij}]$ of order n where

$$a_{ij} = \begin{cases} 1 & \text{if there is an edge from } v_i \text{ to } v_j \\ 0 & \text{otherwise.} \end{cases}$$

A different ordering results in the (similar) matrix PAP^T for some permutation matrix P.

In particular, the digraph is strongly connected iff the matrix A is irreducible, i.e. no P such that $PAP^T = \begin{bmatrix} A_1 & O_{r,n-r} \\ \ast & A_2 \end{bmatrix}$.

NIU LA’09, DeKalb, August 12–14, 2009
Order the vertices in some way: \(v_1, v_2, \ldots, v_n \). The adjacency matrix is the \((0, 1)\)-matrix \(A = [a_{ij}] \) of order \(n \) where

\[
a_{ij} = \begin{cases}
1 & \text{if there is an edge from } v_i \text{ to } v_j \\
0 & \text{otherwise.}
\end{cases}
\]

A different ordering results in the (similar) matrix \(PAP^T \) for some permutation matrix \(P \).

In particular, the digraph is strongly connected iff the matrix \(A \) is irreducible, i.e. no \(P \) such that \(PAP^t = \begin{bmatrix} A_1 & O_{r,n-r} \\ * & A_2 \end{bmatrix} \)
Order the vertices in some way: \(v_1, v_2, \ldots, v_n \). The adjacency matrix is the \((0, 1)\)-matrix \(A = [a_{ij}] \) of order \(n \) where

\[
a_{ij} = \begin{cases}
1 & \text{if there is an edge from } v_i \text{ to } v_j \\
0 & \text{otherwise.}
\end{cases}
\]

A different ordering results in the (similar) matrix \(PAP^T \) for some permutation matrix \(P \).

In particular, the digraph is strongly connected iff the matrix \(A \) is irreducible, i.e. no \(P \) such that

\[
PAP^t = \begin{bmatrix}
A_1 & O_{r,n-r} \\
* & A_2
\end{bmatrix}.
\]
Example of a digraph D
Adjacency Matrix A of D

$$
\begin{bmatrix}
1 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 \\
\end{bmatrix}
$$

Digraphs of order $n \leftrightarrow (0,1)$-matrices of order n

$D_n \leftrightarrow A_n$

Outdegree vector of D is the row sum vector (r_1, r_2, \ldots, r_n) of A.
Indegree vector is the column sum vector (s_1, s_2, \ldots, s_n).
Main Tools/Classical Results
Properties of Digraph Spectra
Some digraph spectra
Tournaments and their Spectral Properties
Totally nonnegative (ordered) digraphs
Cospesctral Digraphs
Energy of Digraphs
Laplacian Eigenvalues of Digraphs

Adjacency Matrix A of D

$$
\begin{bmatrix}
1 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 0
\end{bmatrix}
$$

Digraphs of order $n \leftrightarrow (0,1)$-matrices of order n

$D_n \leftrightarrow A_n$

Outdegree vector of D is the row sum vector (r_1, r_2, \ldots, r_n) of A.
Indegree vector is the column sum vector (s_1, s_2, \ldots, s_n).
Adjacency Matrix A of D

\[
\begin{bmatrix}
1 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 0
\end{bmatrix}
\]

Digraphs of order $n \leftrightarrow (0,1)$-matrices of order n

$D_n \leftrightarrow A_n$

Outdegree vector of D is the row sum vector (r_1, r_2, \ldots, r_n) of A. Indegree vector is the column sum vector (s_1, s_2, \ldots, s_n).

NIU LA’09, DeKalb, August 12–14, 2009
Adjacency Matrix A of D

\[
\begin{bmatrix}
1 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 0
\end{bmatrix}
\]

Digraphs of order $n \leftrightarrow (0,1)$-matrices of order n

$D_n \leftrightarrow A_n$

Outdegree vector of D is the row sum vector (r_1, r_2, \ldots, r_n) of A.
Indegree vector is the column sum vector (s_1, s_2, \ldots, s_n).
Definitions

Characteristic polynomial \(\chi_D(x) \) of \(D \), minimum polynomial of \(D \), spectrum (eigenvalues) \(\lambda_1, \lambda_2, \ldots, \lambda_n \) of \(D \), ... are those of its adjacency matrix \(A \).

Unlike for symmetric matrices, the eigenvalues of \(D \) need not be real numbers. Convention is:

\[
|\lambda_1| \geq |\lambda_2| \geq \cdots \geq |\lambda_n|.
\]

The spectral radius of \(D \) is \(\rho(D) = |\lambda_1| \).

Example \(\bar{K}_n \) (all possible edges) \(\longleftrightarrow \) \(J_n \) (all 1s matrix):
eigenvalues are \(n, 0, \ldots, 0 \).
Definitions

Characteristic polynomial $\chi_D(x)$ of D, **minimum polynomial** of D, **spectrum (eigenvalues)** $\lambda_1, \lambda_2, \ldots, \lambda_n$ of D, ... are those of its adjacency matrix A.

Unlike for symmetric matrices, the eigenvalues of D need not be real numbers. Convention is:

$$|\lambda_1| \geq |\lambda_2| \geq \cdots \geq |\lambda_n|.$$

The **spectral radius** of D is $\rho(D) = |\lambda_1|$.

Example K_n (all possible edges) $\leftrightarrow J_n$ (all 1s matrix): eigenvalues are $n, 0, \ldots, 0$.

NIU LA’09, DeKalb, August 12–14, 2009
Definitions

Characteristic polynomial $\chi_D(x)$ of D, **minimum polynomial** of D, **spectrum (eigenvalues)** $\lambda_1, \lambda_2, \ldots, \lambda_n$ of D, \ldots are those of its adjacency matrix A.

Unlike for symmetric matrices, the eigenvalues of D need not be real numbers. Convention is:

$$|\lambda_1| \geq |\lambda_2| \geq \cdots \geq |\lambda_n|.$$

The **spectral radius** of D is $\rho(D) = |\lambda_1|$.

Example K_n (all possible edges) $\longleftrightarrow J_n$ (all 1s matrix): eigenvalues are $n, 0, \ldots, 0$.
Definitions

Characteristic polynomial $\chi_D(x)$ of D, **minimum polynomial** of D, **spectrum (eigenvalues)** $\lambda_1, \lambda_2, \ldots, \lambda_n$ of D, \ldots are those of its adjacency matrix A.

Unlike for symmetric matrices, the eigenvalues of D need not be real numbers. Convention is:

$$|\lambda_1| \geq |\lambda_2| \geq \cdots \geq |\lambda_n|.$$

The **spectral radius** of D is $\rho(D) = |\lambda_1|$.

Example K_n (all possible edges) $\leftrightarrow J_n$ (all 1s matrix): eigenvalues are $n, 0, \ldots, 0$.
A digraph is **regular** provided the indegree and outdegree of each vertex is some constant \(d \). For such a \(D \), \(\rho(D) = d \).

Theorem (Hoffman/McAndrew 1965) There is a polynomial such that \(p(A) = J_n \) iff \(D \) is a strongly connected, regular digraph. For such a \(D \), the polynomial \(p(x) \) of smallest degree is unique and is

\[
H_D(x) = \frac{nq(x)}{q(d)}
\]

where \((x - d)q(x)\) is the minimum polynomial of \(D \). The integer \(d \) is the largest real solution of the equation \(H_D(x) = n \).
A digraph is **regular** provided the indegree and outdegree of each vertex is some constant d. For such a D, $\rho(D) = d$.

Theorem (Hoffman/McAndrew 1965) There is a polynomial such that $p(A) = J_n$ iff D is a strongly connected, regular digraph. For such a D, the polynomial $p(x)$ of smallest degree is unique and is

$$H_D(x) = \frac{nq(x)}{q(d)}$$

where $(x - d)q(x)$ is the minimum polynomial of D. The integer d is the largest real solution of the equation $H_D(x) = n$.
• \(\rho(D) \) is an eigenvalue,

• If \(D \) is strongly connected, there is a (unique) positive eigenvector corresponding to \(\rho(D) \).

• \(\min\{r_1, r_2, \ldots, r_n\} \leq \rho(D) \leq \max\{r_1, r_2, \ldots, r_n\} \). Equality on the right iff equality on the left iff \(D \) is regular.

• If \(k \) is the GCD of cycle lengths of \(D \), then the spectrum of \(D \) is invariant under a rotation of the complex plane about the origin by the angle \(2\pi/k \).
Some Definitions

- $\mathcal{D}_n(e) =$: all digraphs with n vertices and e edges ($e \leq n^2$).
- $\mathcal{D}(e) =$: all digraphs with e edges, number of vertices not specified.
- $\mathcal{D}_n(e \uparrow) \subseteq \mathcal{D}_n(e)$ such that the vertices can be ordered v_1, v_2, \ldots, v_n so that if (v_p, v_q) is an edge, then (v_i, v_j) is an edge for all i and j with $1 \leq i \leq p, 1 \leq j \leq q$.
- $\mathcal{D}_n(e \downarrow) \subseteq \mathcal{D}_n(e)$ such that the vertices can be ordered w_1, w_2, \ldots, w_n so that if (w_p, w_q) is an edge, then (w_i, w_j) is an edge for all i and j with $1 \leq i \leq p$ and $q \leq j \leq n$.
- $\mathcal{D}(e \uparrow)$ and $\mathcal{D}(e \downarrow)$ defined similarly.
Some Definitions

- $\mathcal{D}_n(e) =: \text{all digraphs with } n \text{ vertices and } e \text{ edges } (e \leq n^2)$.
- $\mathcal{D}(e) =: \text{all digraphs with } e \text{ edges, number of vertices not specified}$.

- $\mathcal{D}_n(e \uparrow) \subseteq \mathcal{D}_n(e)$ such that the vertices can be ordered v_1, v_2, \ldots, v_n so that if (v_p, v_q) is an edge, then (v_i, v_j) is an edge for all i and j with $1 \leq i \leq p, 1 \leq j \leq q$.

- $\mathcal{D}_n(e \downarrow) \subseteq \mathcal{D}_n(e)$ such that the vertices can be ordered w_1, w_2, \ldots, w_n so that if (w_p, w_q) is an edge, then (w_i, w_j) is an edge for all i and j with $1 \leq i \leq p$ and $q \leq j \leq n$.

- $\mathcal{D}(e \uparrow)$ and $\mathcal{D}(e \downarrow)$ defined similarly.
Some Definitions

- $\mathcal{D}_n(e) =$ all digraphs with n vertices and e edges ($e \leq n^2$).
- $\mathcal{D}(e) =$ all digraphs with e edges, number of vertices not specified.
- $\mathcal{D}_n(e \uparrow) \subseteq \mathcal{D}_n(e)$ such that the vertices can be ordered v_1, v_2, \ldots, v_n so that if (v_p, v_q) is an edge, then (v_i, v_j) is an edge for all i and j with $1 \leq i \leq p$, $1 \leq j \leq q$.
- $\mathcal{D}_n(e \downarrow) \subseteq \mathcal{D}_n(e)$ such that the vertices can be ordered w_1, w_2, \ldots, w_n so that if (w_p, w_q) is an edge, then (w_i, w_j) is an edge for all i and j with $1 \leq i \leq p$ and $q \leq j \leq n$.
- $\mathcal{D}(e \uparrow)$ and $\mathcal{D}(e \downarrow)$ defined similarly.
Some Definitions

- $\mathcal{D}_n(e) =: \text{all digraphs with } n \text{ vertices and } e \text{ edges (} e \leq n^2 \text{).}$
- $\mathcal{D}(e) =: \text{all digraphs with } e \text{ edges, number of vertices not specified.}$
- $\mathcal{D}_n(e \uparrow) \subseteq \mathcal{D}_n(e)$ such that the vertices can be ordered v_1, v_2, \ldots, v_n so that if (v_p, v_q) is an edge, then (v_i, v_j) is an edge for all i and j with $1 \leq i \leq p$, $1 \leq j \leq q$.
- $\mathcal{D}_n(e \downarrow) \subseteq \mathcal{D}_n(e)$ such that the vertices can be ordered w_1, w_2, \ldots, w_n so that if (w_p, w_q) is an edge, then (w_i, w_j) is an edge for all i and j with $1 \leq i \leq p$ and $q \leq j \leq n$.
- $\mathcal{D}(e \uparrow)$ and $\mathcal{D}(e \downarrow)$ defined similarly.
Some Definitions

- $\mathcal{D}_n(e) = \text{all digraphs with } n \text{ vertices and } e \text{ edges } (e \leq n^2)$.
- $\mathcal{D}(e) = \text{all digraphs with } e \text{ edges, number of vertices not specified}$.
- $\mathcal{D}_n(e \uparrow) \subseteq \mathcal{D}_n(e)$ such that the vertices can be ordered v_1, v_2, \ldots, v_n so that if (v_p, v_q) is an edge, then (v_i, v_j) is an edge for all i and j with $1 \leq i \leq p, 1 \leq j \leq q$.
- $\mathcal{D}_n(e \downarrow) \subseteq \mathcal{D}_n(e)$ such that the vertices can be ordered w_1, w_2, \ldots, w_n so that if (w_p, w_q) is an edge, then (w_i, w_j) is an edge for all i and j with $1 \leq i \leq p$ and $q \leq j \leq n$.
- $\mathcal{D}(e \uparrow)$ and $\mathcal{D}(e \downarrow)$ defined similarly.
Example of $D_6(25 \uparrow)$ and $D_6(25 \downarrow)$

In terms of the adjacency matrix:

\[
\begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
\quad \text{and} \quad
\begin{bmatrix}
1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\end{bmatrix}
\]
Theorem: The maximum (respectively, minimum) spectral radius among graphs in $\mathcal{D}(e)$ occurs among the graphs in $\mathcal{D}(e \uparrow)$ (respectively, $\mathcal{D}(e \downarrow)$).

Thus

$$\max\{\rho(D) : D \in \mathcal{D}(e)\} = \max\{\rho(D) : D \in \mathcal{D}(e \uparrow)\}$$

and

$$\min\{\rho(D) : D \in \mathcal{D}(e)\} = \min\{\rho(D) : D \in \mathcal{D}(e \downarrow)\}.$$

Similar conclusions hold with $\mathcal{D}_n(e \uparrow)$ in place of $\mathcal{D}(e \uparrow)$ and $\mathcal{D}_n(e \downarrow)$ in place of $\mathcal{D}(e \downarrow)$.

Proof uses Perron-Frobenius theory.
Theorem: The maximum (respectively, minimum) spectral radius among graphs in $\mathcal{D}(e)$ occurs among the graphs in $\mathcal{D}(e \uparrow)$ (respectively, $\mathcal{D}(e \downarrow)$).

Thus

$$\max\{\rho(D) : D \in \mathcal{D}(e)\} = \max\{\rho(D) : D \in \mathcal{D}(e \uparrow)\}$$

and

$$\min\{\rho(D) : D \in \mathcal{D}(e)\} = \min\{\rho(D) : D \in \mathcal{D}(e \downarrow)\}.$$

Similar conclusions hold with $\mathcal{D}_n(e \uparrow)$ in place of $\mathcal{D}(e \uparrow)$ and $\mathcal{D}_n(e \downarrow)$ in place of $\mathcal{D}(e \downarrow)$.

Proof uses Perron-Frobenius theory.
Schwarz’s Theorem 1964

Theorem: The maximum (respectively, minimum) spectral radius among graphs in \(\mathcal{D}(e) \) occurs among the graphs in \(\mathcal{D}(e \uparrow) \) (respectively, \(\mathcal{D}(e \downarrow) \)).

Thus

\[
\max \{ \rho(D) : D \in \mathcal{D}(e) \} = \max \{ \rho(D) : D \in \mathcal{D}(e \uparrow) \}
\]

and

\[
\min \{ \rho(D) : D \in \mathcal{D}(e) \} = \min \{ \rho(D) : D \in \mathcal{D}(e \downarrow) \}.
\]

Similar conclusions hold with \(\mathcal{D}_n(e \uparrow) \) in place of \(\mathcal{D}(e \uparrow) \) and \(\mathcal{D}_n(e \downarrow) \) in place of \(\mathcal{D}(e \downarrow) \).

Proof uses Perron-Frobenius theory.
Geršgorin’s Theorem

Theorem: Let $R^0 = (r_1^0, r_2^0, \ldots, r_n^0)$ and $S^0 = (s_1^0, s_2^0, \ldots, s_n^0)$ be the outdegree and indegree vectors, respectively, of the digraph D^0 obtained from D by removing any loops. Then the spectrum of D is contained in the region of the complex plane defined by the union $\Gamma(D)$ of the disks

$$\{z : |z - a_{ii}| \leq r_i^0\} \quad (i = 1, 2, \ldots, n).$$

Here $A = [a_{ij}]$ is the adjacency matrix of D. Since A is a (0,1)-matrix, the disks have centers at $(0, 0)$ or $(1, 0)$ (thus only two are needed). If A has no loops, then this is no better than what one gets from the Perron-Frobenius theory.
Geršgorin’s Theorem

Theorem: Let $R^0 = (r_1^0, r_2^0, \ldots, r_n^0)$ and $S^0 = (s_1^0, s_2^0, \ldots, s_n^0)$ be the outdegree and indegree vectors, respectively, of the digraph D^0 obtained from D by removing any loops. Then the spectrum of D is contained in the region of the complex plane defined by the union $\Gamma(D)$ of the disks

$$\{z : |z - a_{ii}| \leq r_i^0 \} \quad (i = 1, 2, \ldots, n).$$

Here $A = [a_{ij}]$ is the adjacency matrix of D. Since A is a $(0,1)$-matrix, the disks have centers at $(0,0)$ or $(1,0)$ (thus only two are needed). If A has no loops, then this is no better that what one gets from the Perron-Frobenius theory.
Generalizations of Geršgorin’s Theorem

Theorem: (Same notation) The spectrum of D is contained in the region of the complex plane determined by the union of the lemniscates defined by the cycles γ of D:

$$B_\gamma(D) = \{z : \prod_{i \in \gamma} |z - a_{ii}| \leq \prod_{i \in \gamma} r_i^0\}.$$

In general,

$$\min_\gamma \left\{ \left(\prod_{i \in \gamma} r_i \right)^{1/|\gamma|} \right\} \leq \rho(D) \leq \max_\gamma \left\{ \left(\prod_{i \in \gamma} r_i \right)^{1/|\gamma|} \right\}.$$
Theorem: (Same notation) The spectrum of D is contained in the region of the complex plane determined by the union of the lemniscates defined by the cycles γ of D:

$$B_\gamma(D) = \{z : \prod_{i \in \gamma} |z - a_{ii}| \leq \prod_{i \in \gamma} r_i^0\}.$$

In general,

$$\min \left\{ \left(\prod_{i \in \gamma} r_i \right)^{1/|\gamma|} \right\} \leq \rho(D) \leq \max \left\{ \left(\prod_{i \in \gamma} r_i \right)^{1/|\gamma|} \right\}.$$
max \(\rho(D) \) with \(m^2 \) or \(m^2 + 1 \) edges

(B+Hoffman, 1985)

- \(\max\{\rho(D) : D \in \mathcal{D}(m^2)\} = m \), with equality iff \(D = K_m \).

- \(\max\{\rho(D) : D \in \mathcal{D}(m^2 + 1)\} \), with equality iff apart from isolated vertices, (1) \(D \) is a complete digraph of order \(m \) with one additional edge; or, (2) \(m = 1 \) and the two edges of \(D \) join two distinct vertices in opposite directions; or, (3) \(m = 2 \) and apart from isolated vertices, \(D \) is obtained from the complete digraph of order 3 by removing a complete digraph of order 2.
max $\rho(D)$ with m^2 or $m^2 + 1$ edges

(B+Hoffman, 1985)

• $\max\{\rho(D) : D \in D(m^2)\} = m$, with equality iff $D = \overrightarrow{K}_m$.

• $\max\{\rho(D) : D \in D(m^2 + 1)\}$, with equality iff apart from isolated vertices, (1) D is a complete digraph of order m with one additional edge; or, (2) $m = 1$ and the two edges of D join two distinct vertices in opposite directions; or, (3) $m = 2$ and apart from isolated vertices, D is obtained from the complete digraph of order 3 by removing a complete digraph of order 2.
Friedland (1985)

- For $1 \leq l \leq 2m$,

$$\max\{\rho(D) : D \in \mathcal{D}(m^2 + l)\} \leq \frac{m + \sqrt{m^2 + 2l}}{2}.$$

Equality if $l = 2m$ and, apart from isolated vertices, D is obtained from K_{m+1} by removing a loop at one vertex.

- $\max\{\rho(D) : D \in \mathcal{D}(m^2 + 2m - 3)\} \leq \frac{m-1 + \sqrt{m^2 + 6m - 7}}{2}$. For $m \geq 3$, equality holds if and only if D is obtained from K_{m+1} by removing a complete digraph $\mathrel{\rightarrow\leftarrow} K_2$ of order 2 (a zero matrix of order 2 in lower right).
Bounds for $\max \rho(D), 1$

Friedland (1985)

- For $1 \leq l \leq 2m$,

$$\max \{\rho(D) : D \in \mathcal{D}(m^2 + l)\} \leq \frac{m + \sqrt{m^2 + 2l}}{2}.$$

Equality if $l = 2m$ and, apart from isolated vertices, D is obtained from $\leftrightarrow K_{m+1}$ by removing a loop at one vertex.

- $\max \{\rho(D) : D \in \mathcal{D}(m^2 + 2m - 3)\} \leq \frac{m-1+\sqrt{m^2+6m-7}}{2}$. For $m \geq 3$, equality holds if and only if D is obtained from $\leftrightarrow K_{m+1}$ by removing a complete digraph $\leftrightarrow K_2$ of order 2 (a zero matrix of order 2 in lower right).
Friedland (1985)

- For \(l \geq 2 \), there exists a constant \(C_l \) such that if \(m \geq C_l \), a digraph \(D^* \in \mathcal{D}(m^2 + l) \) satisfying

\[
\rho(D^*) = \max\{\rho(D) : D \in \mathcal{D}(m^2 + l)\}
\]

is obtained from \(K_m \) by including a new vertex \(u \) and edges in both directions joining \(u \) and \(\lfloor l/2 \rfloor \) vertices of \(K_m \), and, if \(l \) is odd, a edge in either direction joining \(u \) and an additional vertex of \(K_m \).
min $\rho(D)$ with e edges

- If $e \leq \binom{n}{2}$, then $\tilde{\rho}(n, e) = 0$: there is a digraph $D \in \mathcal{D}_n(e)$ such that every edge is of the form (i, j) with $i > j$ (the adjacency matrix has 0s on and above the main diagonal).

- If
 \[
 \binom{n}{2} < e \leq \binom{n+1}{2},
 \]
 then $\tilde{\rho}(n, e) = 1$: there is a digraph whose adjacency matrix has 0s above the main diagonal and at least one 1 on the main diagonal.

So assume that $e > \binom{n+1}{2}$.

NIU LA’09, DeKalb, August 12–14, 2009
\min \rho(D) \text{ with } e \text{ edges}

- If \(e \leq \binom{n}{2}\), then \(\tilde{\rho}(n, e) = 0\): there is a digraph \(D \in \mathcal{D}_n(e)\) such that every edge is of the form \((i, j)\) with \(i > j\) (the adjacency matrix has 0s on and above the main diagonal).

- If

\[
\binom{n}{2} < e \leq \binom{n + 1}{2},
\]

then \(\tilde{\rho}(n, e) = 1\): there is a digraph whose adjacency matrix has 0s above the main diagonal and at least one 1 on the main diagonal).

So assume that \(e > \binom{n+1}{2}\).
\[
\min \rho(D) \text{ with } e \text{ edges}
\]

- If \(e \leq \binom{n}{2} \), then \(\tilde{\rho}(n, e) = 0 \): there is a digraph \(D \in \mathcal{D}_n(e) \) such that every edge is of the form \((i, j)\) with \(i > j \) (the adjacency matrix has 0s on and above the main diagonal).
- If
 \[
 \binom{n}{2} < e \leq \binom{n+1}{2},
 \]
 then \(\tilde{\rho}(n, e) = 1 \): there is a digraph whose adjacency matrix has 0s above the main diagonal and at least one 1 on the main diagonal).

So assume that \(e > \binom{n+1}{2} \).

NIU LA’09, DeKalb, August 12–14, 2009
B+Solheid (1986)

Let \(n \geq 2 \) and \(0 \leq \tau \leq \lfloor n/2 \rfloor \lceil n/2 \rceil \). Then

\[
\tilde{\rho}(n, n^2 - \tau) = n + \sqrt{n^2 - 4\tau}.
\]

If \(D \in \mathcal{D}_n(n^2 - \tau) \), then \(\rho(D) = \tilde{\rho}(n, n^2 - \tau) \) iff there are \(p \) and \(q \) with \(p + q = n \), such that \(D \) is obtained by taking the complete digraph \(\leftrightarrow K_n \), partitioning its vertices into sets \(U \) and \(W \) of cardinalities \(p \) and \(q \), respectively, and then removing any \(\tau \) edges from the vertices in \(U \) to the vertices in \(W \).
B+Solheid (1986)
Let \(n \geq 2 \) and \(0 \leq \tau \leq \lfloor n/2 \rfloor \lceil n/2 \rceil \). Then

\[
\tilde{\rho}(n, n^2 - \tau) = \frac{n + \sqrt{n^2 - 4\tau}}{2}.
\]

If \(D \in \mathcal{D}_n(n^2 - \tau) \), then \(\rho(D) = \tilde{\rho}(n, n^2 - \tau) \) iff there are \(p \) and \(q \) with \(p + q = n \), such that \(D \) is obtained by taking the complete digraph \(\leftrightarrow K_n \), partitioning its vertices into sets \(U \) and \(W \) of cardinalities \(p \) and \(q \), respectively, and then removing any \(\tau \) edges from the vertices in \(U \) to the vertices in \(W \).
If $n = 7$ and $\tau = 6$, an example with equality is the digraph with adjacency matrix

$$
\begin{bmatrix}
1 & 1 & 1 & 0 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\end{bmatrix}
$$
In the remaining cases, \(\tilde{\rho}(n, n^2 - \tau) \) can be sandwiched between two consecutive integers: Let \(1 \leq k \leq n \), and let \(n = qk + l \) where \(q \) is a positive integer and \(0 \leq l < k \). Define

\[
\tau_{n,k} = \frac{q(q-1)}{2}k^2 + qkl.
\]

• Let \(0 \leq \tau < \binom{n}{2} \). Let \(1 \leq k \leq n - 1 \) be such that

\[
\tau_{n,k+1} \leq \tau < \tau_{n,k}.
\]

Then

\[
k < \tilde{\rho}(n, n^2 - \tau) \leq k + 1.
\]
In the remaining cases, $\tilde{\rho}(n, n^2 - \tau)$ can be sandwiched between two consecutive integers: Let $1 \leq k \leq n$, and let $n = qk + l$ where q is a positive integer and $0 \leq l < k$. Define

$$\tau_{n,k} = \frac{q(q-1)}{2}k^2 + qkl.$$

• Let $0 \leq \tau < \binom{n}{2}$. Let $1 \leq k \leq n - 1$ be such that

$$\tau_{n,k+1} \leq \tau < \tau_{n,k}.$$

Then

$$k < \tilde{\rho}(n, n^2 - \tau) \leq k + 1.$$
In the remaining cases, $\tilde{\rho}(n, n^2 - \tau)$ can be sandwiched between two consecutive integers: Let $1 \leq k \leq n$, and let $n = qk + l$ where q is a positive integer and $0 \leq l < k$. Define

$$\tau_{n,k} = \frac{q(q - 1)}{2} k^2 + qkl.$$

- Let $0 \leq \tau < \binom{n}{2}$. Let $1 \leq k \leq n - 1$ be such that

$$\tau_{n,k+1} \leq \tau < \tau_{n,k}.$$

Then

$$k < \tilde{\rho}(n, n^2 - \tau) \leq k + 1.$$
Adding edges to Δ_n

Δ_n is the **transitive tournament** on n vertices: there is an edge from i to j iff $n \geq i > j \geq 1$. For example, Δ_5 has adjacency matrix

$$
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 \\
\end{bmatrix}
$$

Δ_n has all eigenvalues equal to 0 and so spectral radius 0.

Question: (B+Hwang, 1996) How should one add d new edges to maximize (minimize) the spectral radius?
Adding edges to Δ_n

Δ_n is the **transitive tournament** on n vertices: there is an edge from i to j iff $n \geq i > j \geq 1$. For example, Δ_5 has adjacency matrix

$$
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 0
\end{bmatrix}.
$$

Δ_n has all eigenvalues equal to 0 and so spectral radius 0.

Question: (B+Hwang, 1996) How should one add d new edges to maximize (minimize) the spectral radius?
If $d = 1$, the maximum spectral radius occurs only by putting the new edge from 1 to n:

$$
\begin{bmatrix}
0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 0
\end{bmatrix}
$$

In fact, if $d \leq n - 2$, in order to achieve the maximum spectral radius one must add the edge from 1 to n.
Example

If $d = 1$, the maximum spectral radius occurs only by putting the new edge from 1 to n:

$$
\begin{bmatrix}
0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 0
\end{bmatrix}.
$$

In fact, if $d \leq n - 2$, in order to achieve the maximum spectral radius one must add the edge from 1 to n.
Theorem: Let d be a positive integer. Then for n sufficiently large, a digraph with maximal spectral radius obtained by adding d new edges to Δ_n has the property that the new edges (1s) have an upper staircase pattern. For example, with $n = 7$ and $d = 8$, one possibility is:

$$
\begin{bmatrix}
1 & 0 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1
\end{bmatrix}.$$

NIU LA’09, DeKalb, August 12–14, 2009
Theorem: Let d be a positive integer. Then for n sufficiently large, a digraph with maximal spectral radius obtained by adding d new edges to Δ_n has the property that the new edges (1s) have an upper staircase pattern. For example, with $n = 7$ and $d = 8$, one possibility is:

\[
\begin{bmatrix}
1 & 0 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1
\end{bmatrix}
\]
Theorem:

- For $1 \leq d \leq n(n - 1)/2$, the minimum spectral radius is attained by a matrix with a staircase pattern.

An example of such a matrix with a staircase pattern, with $n = 7$ and $d = 8$ is:

$$
\begin{bmatrix}
1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1
\end{bmatrix}
$$
Theorem:

• For $1 \leq d \leq n(n - 1)/2$, the minimum spectral radius is attained by a matrix with a **staircase pattern**.

An example of such a matrix with a staircase pattern, with $n = 7$ and $d = 8$ is:

\[
\begin{bmatrix}
1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\end{bmatrix}
\]
Minimum Spectral Radius continued

Theorem continued:

• If $1 \leq d < n$, then the minimum spectral radius equals

$$\begin{cases}
2 & \text{if } 1 \leq d \leq \left\lfloor \frac{n}{2} \right\rfloor, \\
\frac{3+\sqrt{5}}{2} & \text{if } \left\lfloor \frac{n}{2} \right\rfloor + 1 \leq d \leq \left\lfloor \frac{2n}{3} \right\rfloor, \\
3 & \text{if } \left\lfloor \frac{2n}{3} \right\rfloor + 1 \leq d \leq n - 1.
\end{cases}$$

• If $n \geq 3$ and $d = n$, the minimum spectral radius equals

$$\begin{cases}
3 & \text{if } n \equiv 3 \mod 3, \\
2 + \sqrt{2} & \text{if } n \equiv 1 \text{ or } 2 \mod 3, \ n \neq 2, 5, \\
\frac{5+\sqrt{5}}{2} & \text{if } n = 5.
\end{cases}$$
Minimum Spectral Radius continued

Theorem continued:

- If $1 \leq d < n$, then the minimum spectral radius equals
 \[
 \begin{cases}
 2 & \text{if } 1 \leq d \leq \left\lfloor \frac{n}{2} \right\rfloor, \\
 \frac{3+\sqrt{5}}{2} & \text{if } \left\lfloor \frac{n}{2} \right\rfloor + 1 \leq d \leq \left\lfloor \frac{2n}{3} \right\rfloor, \\
 3 & \text{if } \left\lfloor \frac{2n}{3} \right\rfloor + 1 \leq d \leq n-1.
 \end{cases}
 \]

- If $n \geq 3$ and $d = n$, the minimum spectral radius equals
 \[
 \begin{cases}
 3 & \text{if } n \equiv 3 \text{ mod } 3, \\
 2 + \sqrt{2} & \text{if } n \equiv 1 \text{ or } 2 \text{ mod } 3, \ n \neq 2, 5, \\
 \frac{5+\sqrt{5}}{2} & \text{if } n = 5.
 \end{cases}
 \]
There is an impressive series of three papers by L. Kolotilina (2005-06-06) that extends and generalizes many classical bounds for the spectral radius of a nonnegative matrix. When specialized to digraphs they give very interesting conclusions. For instance:

Theorem Let D be a digraph of order n with a positive outdegree vector $R = (r_1, r_2, \ldots, r_n)$. Then for each α with $0 \leq \alpha \leq 1$,

$$\min \left\{ r_i^\alpha r_j^{1-\alpha} : (v_i, v_j) \in E \right\} \leq \rho(D) \leq \max \left\{ r_i^\alpha r_j^{1-\alpha} : (v_i, v_j) \in E \right\}.$$

Conditions are given for equality to hold on each side.
There is an impressive series of three papers by L. Kolotilina (2005-06-06) that extends and generalizes many classical bounds for the spectral radius of a nonnegative matrix. When specialized to digraphs they give very interesting conclusions. For instance:

Theorem Let D be a digraph of order n with a positive outdegree vector $R = (r_1, r_2, \ldots, r_n)$. Then for each α with $0 \leq \alpha \leq 1$,

$$
\min \left\{ r_i^\alpha r_j^{1-\alpha} : (v_i, v_j) \in E \right\} \leq \rho(D) \leq \max \left\{ r_i^\alpha r_j^{1-\alpha} : (v_i, v_j) \in E \right\}.
$$

Conditions are given for equality to hold on each side.
The **Manhattan street digraph** (view on a torus) $M_2(4, 4)$ is:

$$M_2(n_1, n_2)$$ is defined/drawn in a similar way. There is a more general k-dimensional version.

NIU LA’09, DeKalb, August 12–14, 2009
The **Manhattan street digraph** (view on a torus) $M_2(4, 4)$ is:

![Manhattan Street Digraph](image)

$M_2(n_1, n_2)$ is defined/drawn in a similar way. There is a more general k-dimensional version.

NIU LA’09, DeKalb, August 12–14, 2009
Theorem (Comellas, Dalfó, Fiol, 2008): The eigenvalues of $M_2(n_1, n_2)$ are

$$0, \pm \sqrt{2 \cos \left(\frac{4\pi k}{n_1}\right) + 2 \cos \left(\frac{4\pi l}{n_2}\right)} \quad (0 \leq k \leq \frac{n_1}{2} - 1, 0 \leq l \leq \frac{n_2}{2} - 1)$$

In addition, the geometric multiplicity of each nonzero eigenvalue equals its algebraic multiplicity, while the geometric multiplicity of the eigenvalue 0 is at least $(n_1 n_2)/2$, and equals $(n_1 n_2)/2$ if $n_i \not\equiv 0 \mod 4$ for $i = 1$ and 2.

There are some results for the k-dimensional Manhattan street digraph.
Theorem (Comellas, Dalfó, Fiol, 2008): The eigenvalues of $M_2(n_1, n_2)$ are

\[0, \pm \sqrt{2 \cos \left(\frac{4\pi k}{n_1} \right) + 2 \cos \left(\frac{4\pi l}{n_2} \right)} \quad (0 \leq k \leq \frac{n_1}{2} - 1, 0 \leq l \leq \frac{n_2}{2} - 1) \]

In addition, the geometric multiplicity of each nonzero eigenvalue equals its algebraic multiplicity, while the geometric multiplicity of the eigenvalue 0 is at least $(n_1 n_2)/2$, and equals $(n_1 n_2)/2$ if $n_i \not\equiv 0 \mod 4$ for $i = 1$ and 2.

There are some results for the k-dimensional Manhattan street digraph.
Wrapped butterfly digraphs have been studied for their application in network theory. Let d and n be positive integers. The \textit{wrapped butterfly digraph} $B_d(n)$ has vertices

$$\{(l; x) = (l; x_0, x_1, \ldots, x_{n-1}) : 0 \leq l \leq n - 1, 0 \leq x_i \leq d - 1\}.$$

(The l in a vertex is called its \textbf{level}.)

Edges are:

$$\{(l; x_0, x_1, \ldots, x_{n-1}) \rightarrow (l + 1; x_0, x_1, \ldots, x_{l-1}, \alpha, x_{l+1}, \ldots, x_{n-1})$$

for every integer α with $0 \leq \alpha \leq d - 1$. Here addition in the first component is modulo n and in the other components modulo d (thus the use of the word \textit{wrapped}).
Wrapped butterfly digraphs have been studied for their application in network theory. Let d and n be positive integers. The wrapped butterfly digraph $B_d(n)$ has vertices

$$\{(l; x) = (l; x_0, x_1, \ldots, x_{n-1}) : 0 \leq l \leq n - 1, 0 \leq x_i \leq d - 1\}.$$ (The l in a vertex is called its level.)

Edges are:

$$(l; x_0, x_1, \ldots, x_{n-1}) \rightarrow (l + 1; x_0, \ldots, x_{l-1}, \alpha, x_{l+1}, \ldots, x_{n-1})$$

for every integer α with $0 \leq \alpha \leq d - 1$. Here addition in the first component is modulo n and in the other components modulo d (thus the use of the word wrapped).
In general, $B_d(n)$ is a strongly connected digraph of order nd^n and has diameter $2n - 1$; it is also regular of degree d.
In general, $B_d(n)$ is a strongly connected digraph of order nd^n and has diameter $2n - 1$; it is also regular of degree d.
Theorem (Comellas, Fiol, Gimbert, Mitjana, 2008): The spectrum of the wrapped butterfly digraph $B_d(n)$ is

\[0 \quad [n(d^n - 1)], \quad d \quad [1], \quad d\omega^1 \quad [1], \quad d\omega^2 \quad [1], \ldots, \quad d\omega^{n-1} \quad [1] \]

where $\omega = e^{2\pi i/n}$ and the quantities in the brackets are the algebraic multiplicities.
A **tournament** T is a digraph in which between each pair of distinct vertices there is exactly one edge (no loops).

The outdegree sequence of a tournament is usually called its **score sequence**. The adjacency matrix of a tournament is a **tournament matrix**.

Example: $A = \begin{bmatrix} 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \end{bmatrix}$ is a tournament matrix.
A tournament T is a digraph in which between each pair of distinct vertices there is exactly one edge (no loops).

The outdegree sequence of a tournament is usually called its score sequence. The adjacency matrix of a tournament is a tournament matrix.

Example:

\[
A = \begin{bmatrix}
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0
\end{bmatrix}
\]

is a tournament matrix.
Let T denote a tournament with score sequence

$$R = (r_1, r_2, \ldots, r_n) \text{ where } r_1 \leq r_2 \leq \cdots \leq r_n.$$

Then

$$A + A^t = J_n - I_n \quad (J_n \text{ the all 1s matrix}).$$

This equation leads to special spectral properties of tournaments. For instance, the rank of a tournament matrix A of order n is at least $n - 1$ and so if 0 is an eigenvalue of A, then it is a simple eigenvalue.
Tournament Spectra

Let T denote a tournament with score sequence

$$R = (r_1, r_2, \ldots, r_n) \quad \text{where } r_1 \leq r_2 \leq \cdots \leq r_n.$$

Then

$$A + A^t = J_n - I_n \quad (J_n \text{ the all 1s matrix}).$$

This equation leads to special spectral properties of tournaments. For instance, the rank of a tournament matrix A of order n is at least $n - 1$ and so if 0 is an eigenvalue of A, then it is a simple eigenvalue.
Let T denote a tournament with score sequence

$$R = (r_1, r_2, \ldots, r_n) \quad \text{where } r_1 \leq r_2 \leq \cdots \leq r_n.$$

Then

$$A + A^t = J_n - I_n \quad (J_n \text{ the all 1s matrix}).$$

This equation leads to special spectral properties of tournaments. For instance, the rank of a tournament matrix A of order n is at least $n - 1$ and so if 0 is an eigenvalue of A, then it is a simple eigenvalue.
Theorem Brauer and Gentry (Bull. AMS: 1968, LAA: 1972) The real part of each eigenvalue of a tournament T of order n is at least $-1/2$. Moreover,

$$\min\{(r_1 r_2 r_3)^{1/3}, (r_1 r_3)^{1/2}\} \leq \rho(T) \leq \frac{n - 1}{2}.$$

Equality occurs on the right if and only if T is a regular tournament (and so n must be odd).

Also, for each eigenvalue λ of T,

$$|\text{Im} \lambda| \leq \frac{1}{2} \cot(\pi/2n).$$
Theorem} Brauer and Gentry (Bull. AMS: 1968, LAA: 1972) The real part of each eigenvalue of a tournament T of order n is at least $-1/2$. Moreover,

$$\min\{(r_1 r_2 r_3)^{1/3}, (r_1 r_3)^{1/2}\} \leq \rho(T) \leq \frac{n-1}{2}.$$

Equality occurs on the right if and only if T is a regular tournament (and so n must be odd).

Also, for each eigenvalue λ of T,

$$|\text{Im } \lambda| \leq \frac{1}{2} \cot(\pi/2n).$$

NIU LA’09, DeKalb, August 12–14, 2009
Conjecture: RAB and Li (Disc. Math: 1983) For \(n \) even, the maximum spectral radius \(\bar{\rho}_n \) of a tournament of order \(n \) equals the spectral radius of the nearly regular tournament with adjacency matrix

\[
\begin{bmatrix}
\frac{L_{n/2}}{L_{n/2}} & L^t_{n/2} + I_{n/2} \\
L^t_{n/2} & \frac{L_{n/2}}{L_{n/2}}
\end{bmatrix}, \text{ where } L_{n/2} = \\
\begin{bmatrix}
0 & 1 & 1 & 1 & \cdots & 1 \\
0 & 0 & 1 & 1 & \cdots & 1 \\
0 & 0 & 0 & 1 & \cdots & 1 \\
0 & 0 & 0 & 0 & \cdots & 1 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 0
\end{bmatrix},
\]

is the adjacency matrix of the transitive tournament of order \(n/2 \).

These tournaments have been called Brualdi-Li tournaments.
Progress on the Conjecture for ρ_n, n even

Theorem: Kirkland (LAMA: 1991, LAA: 1997, LAA:2003): If T is a nearly regular tournament of order $n = 2m$, then

$$\rho(T) \geq \frac{m - 1}{2} - \sqrt{m^2 - 1}.$$

For every regular tournament of order m with adjacency matrix S, the nearly regular tournament T of order n with adjacency matrix

$$\begin{bmatrix}
S & S^t \\
S^t + I_m & S
\end{bmatrix}$$

has this spectral radius.
Progress on the Conjecture for $\bar{\rho}_n$, n even

(Kirkland continued)

If n is even, then

$$
\bar{\rho}_n = \frac{n-1}{2} - \frac{\gamma_n}{n} + O\left(\frac{1}{n^2}\right), \text{ where}
$$

$$
0.377453 \ldots \approx \frac{2 \cdot 3^{2/3} - 3^{4/3} + 13}{34} \leq \gamma_n \leq \frac{e^2 - 1}{2(e^2 + 1)} \approx 0.380797 \ldots.
$$

Moreover, for n sufficiently large a tournament of order n with maximum spectral radius must be nearly regular.
Conjecture: RAB and Li (Disc. Math: 1983) Let $\tilde{\rho}_n$ denote the minimum spectral radius of a strongly connected tournament of order n. Then $\tilde{\rho}_n$ equals the spectral radius of the tournament \tilde{T}_n with adjacency matrix

$$
\begin{bmatrix}
0 & 1 & 0 & 0 & 0 & \cdots & 0 \\
0 & 0 & 1 & 0 & 0 & \cdots & 0 \\
1 & 0 & 0 & 1 & 0 & \cdots & 0 \\
1 & 1 & 0 & 0 & 1 & \cdots & 0 \\
1 & 1 & 1 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
1 & 1 & 1 & 1 & 1 & \cdots & 0
\end{bmatrix}.
$$
Theorem: Kirkland (LAA: 1996) Let T be a strongly connected tournament of order n. Then

$$\rho(T) \geq \rho(\tilde{T}_n),$$

with equality if and only if T is isomorphic to \tilde{T}_n.

Remark: de Caen, Gregory, Kirkland, Pullman, and Maybee (LAA: 1997)

$$\rho(\tilde{T}_n) \rightarrow 2.4844353 \ldots.$$
Theorem: Kirkland (LAA: 1996) Let T be a strongly connected tournament of order n. Then

$$\rho(T) \geq \rho(\tilde{T}_n),$$

with equality if and only if T is isomorphic to \tilde{T}_n.

Remark: de Caen, Gregory, Kirkland, Pullman, and Maybee (LAA: 1997)

$$\rho(\tilde{T}_n) \rightarrow 2.4844353 \ldots$$
Consider the digraph D with adjacency matrix

\[
A = \begin{bmatrix}
1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1
\end{bmatrix}.
\]

All square submatrices have a nonnegative determinant; thus A, respectively, D, is \textit{totally nonnegative}.

The eigenvalues are: 0, 0, 0, 0.5858, 2, 3.4142.
Consider the digraph D with adjacency matrix

$$
A = \begin{bmatrix}
1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1
\end{bmatrix}.
$$

All square submatrices have a nonnegative determinant; thus A, respectively, D, is **totally nonnegative**.

The eigenvalues are: 0, 0, 0, 0.5858, 2, 3.4142.
Example

Consider the digraph D with adjacency matrix

$$A = \begin{bmatrix}
1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 \\
\end{bmatrix}.$$

All square submatrices have a nonnegative determinant; thus A, respectively, D, is **totally nonnegative**.

The eigenvalues are: 0, 0, 0, 0.5858, 2, 3.4142.
Total nonnegativity of a digraph depends on the order in which the vertices are listed.

\[
\begin{bmatrix}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}
\]

is totally nonnegative, but interchanging rows 1 and 2 and interchanging columns 1 and 2 gives the matrix

\[
\begin{bmatrix}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}
\]

which is not totally nonnegative.
A Second Example

Total nonnegativity of a digraph depends on the order in which the vertices are listed.

\[
\begin{bmatrix}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{bmatrix}
\]

is totally nonnegative, but interchanging rows 1 and 2 and interchanging columns 1 and 2 gives the matrix

\[
\begin{bmatrix}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{bmatrix}
\]

which is not totally nonnegative.
A Third Example

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

has positive eigenvalues 1, 1, 1, but is not totally nonnegative. Total nonnegativity implies nonnegativity of all eigenvalues, but not conversely.
A Third Example

\[A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \]

has positive eigenvalues 1, 1, 1, but is not totally nonnegative. Total nonnegativity implies nonnegativity of all eigenvalues, but not conversely.
Theorem (McKay et al, 2004) If all the eigenvalues of a digraph D are positive, then the digraph has no cycles of length > 1.

Such a digraph has an adjacency matrix with all 1s on the main diagonal and all 0s above the main diagonal; thus all eigenvalues equal 1. This digraph need not be totally nonnegative: recall the matrix $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$.

Corollary An *irreducible* $(0, 1)$-matrix of order $n \geq 2$ with all eigenvalues nonnegative is singular (0 must be an eigenvalue).

Question raised: Investigate digraphs all of whose eigenvalues are real and nonnegative.

NIU LA’09, DeKalb, August 12–14, 2009
Theorem (McKay et al, 2004) If all the eigenvalues of a digraph D are positive, then the digraph has no cycles of length > 1.

Such a digraph has an adjacency matrix with all 1s on the main diagonal and all 0s above the main diagonal; thus all eigenvalues equal 1. This digraph need not be totally nonnegative: recall the matrix $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$.

Corollary An irreducible $(0, 1)$-matrix of order $n \geq 2$ with all eigenvalues nonnegative is singular (0 must be an eigenvalue). Question raised: Investigate digraphs all of whose eigenvalues are real and nonnegative.
Theorem (McKay et al, 2004) If all the eigenvalues of a digraph D are positive, then the digraph has no cycles of length > 1.

Such a digraph has an adjacency matrix with all 1s on the main diagonal and all 0s above the main diagonal; thus **all eigenvalues equal 1**. This digraph need not be totally nonnegative: recall the matrix

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}.$$

Corollary An **irreducible** $(0, 1)$-matrix of order $n \geq 2$ with all eigenvalues nonnegative is singular (0 must be an eigenvalue).

Question raised: Investigate digraphs all of whose eigenvalues are real and nonnegative.

NIU LA’09, DeKalb, August 12–14, 2009
Theorem (McKay et al, 2004) If all the eigenvalues of a digraph \(D \) are positive, then the digraph has no cycles of length \(> 1 \).

Such a digraph has an adjacency matrix with all 1s on the main diagonal and all 0s above the main diagonal; thus all eigenvalues equal 1. This digraph need not be totally nonnegative: recall the matrix

\[
A = \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{bmatrix}.
\]

Corollary An irreducible \((0, 1)\)-matrix of order \(n \geq 2 \) with all eigenvalues nonnegative is singular (0 must be an eigenvalue).

Question raised: Investigate digraphs all of whose eigenvalues are real and nonnegative.
Theorem Let D be a digraph of order n with r positive eigenvalues and $n - r$ zero eigenvalues. Assume that D has exactly r loops. Then D has no cycles of length greater than 1.

Proof Outline: A the adjacency matrix of D with eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \lambda_r > 0 = \lambda_{r+1} = \cdots = \lambda_n$. Then

$$1 = \frac{\text{trace}(A)}{r} = \frac{\lambda_1 + \cdots + \lambda_r}{r} \geq \left(\prod_{i=1}^{r} \lambda_i \right)^{1/r} \geq 1.$$

This implies that $\lambda_1 = \cdots = \lambda_r = 1$. Now use the P-F theory to conclude that A has r irreducible components equal to $I_1 = [1]$ and $n - r$ irreducible components equal to $O_1 = [0]$.
Theorem Generalized

Theorem Let D be a digraph of order n with r positive eigenvalues and $n - r$ zero eigenvalues. Assume that D has exactly r loops. Then D has no cycles of length greater than 1.

Proof Outline: A the adjacency matrix of D with eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \lambda_r > 0 = \lambda_{r+1} = \cdots = \lambda_n$. Then

$$1 = \frac{\text{trace}(A)}{r} = \frac{\lambda_1 + \cdots + \lambda_r}{r} \geq \left(\prod_{i=1}^{r} \lambda_i \right)^{1/r} \geq 1.$$

This implies that $\lambda_1 = \cdots = \lambda_r = 1$. Now use the P-F theory to conclude that A has r irreducible components equal to $I_1 = [1]$ and $n - r$ irreducible components equal to $O_1 = [0]$.

NIU LA’09, DeKalb, August 12–14, 2009
Remark

It is not hard to show that if \(A \) has \(n - 1 \) positive and one zero eigenvalue, then the trace of \(A \) equals \(n - 1 \) or \(n \). The preceding theorem takes care of the case of trace equal to \(n - 1 \). If trace of \(A \) equals \(n \), \(A \) need not be triangularizable. For example,

\[
A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \text{ (trace } = 2, \text{ eigenvalues } 0, 2), \text{ and}
\]

\[
A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \text{ (trace } = 3, \text{ and eigenvalues } 0, 0.3820, 2.6180).
\]
Theorem (RAB and Kirkland, 2009): An m by n (0,1)-matrix is totally nonnegative iff it has no submatrix equal to one of

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \text{ or } \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}.$$

More on totally nonnegative digraphs ((0,1)-matrices) in a forthcoming paper by RAB and Kirkland. E.g. An irreducible totally nonnegative (0,1)-matrix of order n has 0 as an eigenvalue of multiplicity at least $\lceil n/2 \rceil$.
Theorem (RAB and Kirkland, 2009): An m by n $(0,1)$-matrix is totally nonnegative iff it has no submatrix equal to one of

\[
\begin{bmatrix}
0 & 1 \\
1 & 1
\end{bmatrix},
\begin{bmatrix}
1 & 1 \\
1 & 0
\end{bmatrix},
\begin{bmatrix}
0 & 1 \\
1 & 0
\end{bmatrix}, \text{ or }
\begin{bmatrix}
1 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 1
\end{bmatrix}.
\]

More on totally nonnegative digraphs ((0,1)-matrices) in a forthcoming paper by RAB and Kirkland. E.g. An irreducible totally nonnegative $(0,1)$-matrix of order n has 0 as an eigenvalue of multiplicity at least $\lfloor n/2 \rfloor$.

NIU LA’09, DeKalb, August 12–14, 2009
Digraphs D_1 and D_2 are **cospectral** provided they are not isomorphic but have the same spectrum (may be complex).

Example (Krishnamurthy and Parthasarathy, 1974, 1975): Let D_i be the digraph obtained from a directed cycle $(v_1, v_2, \ldots, v_{2k}, v_1)$ of length $2k$ by adding two new vertices, u and w, and inserting edges $(v_1, u), (u, v_1), (w, v_i), (v_i, w)$. Then for $2 \leq i \leq k + 1$, the resulting strongly connected digraphs of order $n = 2k + 2$ are cospectral, indeed have characteristic polynomial equal to

$$
\lambda^{2k+2} - 2\lambda^{2k} + \lambda^{2k-2} - \lambda^2.
$$

Note: It is easy to find non-strongly connected examples.
Definition and Example

Digraphs D_1 and D_2 are cospectral provided they are not isomorphic but have the same spectrum (may be complex).

Example (Krishnamurthy and Parthsarathy, 1974, 1975): Let D_i be the digraph obtained from a directed cycle $(v_1, v_2, \ldots, v_{2k}, v_1)$ of length $2k$ by adding two new vertices, u and w, and inserting edges $(v_1, u), (u, v_1), (w, v_i), (v_i, w)$. Then for $2 \leq i \leq k + 1$, the resulting strongly connected digraphs of order $n = 2k + 2$ are cospectral, indeed have characteristic polynomial equal to

$$
\lambda^{2k+2} - 2\lambda^{2k} + \lambda^{2k-2} - \lambda^2.
$$

Note: It is easy to find non-strongly connected examples.
Definition and Example

Digraphs D_1 and D_2 are \textbf{cospectral} provided they are not isomorphic but have the same spectrum (may be complex).

\textbf{Example} (Krishnamurthy and Parthsarathy, 1974, 1975): Let D_i be the digraph obtained from a directed cycle $(v_1, v_2, \ldots, v_{2k}, v_1)$ of length $2k$ by adding two new vertices, u and w, and inserting edges $(v_1, u), (u, v_1), (w, v_i), (v_i, w)$. Then for $2 \leq i \leq k + 1$, the resulting strongly connected digraphs of order $n = 2k + 2$ are cospectral, indeed have characteristic polynomial equal to

$$
\lambda^{2k+2} - 2\lambda^{2k} + \lambda^{2k-2} - \lambda^2.
$$

Note: It is easy to find non-strongly connected examples.
Three cospectral, strongly connected digraphs of this type.
Gutman (1978) defined the energy of a graph to be the sum of the absolute values of its eigenvalues.

Nikiforov (2007) defined the energy of a matrix A to be the sum of the singular values of A (the positive square roots of the eigenvalues of the p-s-d symmetric matrix AA^T):

$$E(A) = \sigma_1 + \sigma_2 + \cdots,$$

and gave a general upper bound for $E(A)$ which for digraphs with q edges becomes:

$$E(D) \leq \frac{q}{n} + \sqrt{(n - 1) \left(q - \frac{q^2}{n^2}\right)}$$

Gutman (1978) defined the energy of a graph to be the sum of the absolute values of its eigenvalues. Nikiforov (2007) defined the energy of a matrix A to be the sum of the singular values of A (the positive square roots of the eigenvalues of the p-s-d symmetric matrix AA^T):

$$E(A) = \sigma_1 + \sigma_2 + \cdots,$$

and gave a general upper bound for $E(A)$ which for digraphs with q edges becomes:

$$E(D) \leq \frac{q}{n} + \sqrt{(n - 1) \left(q - \frac{q^2}{n^2} \right)}$$

Gutman (1978) defined the energy of a graph to be the sum of the absolute values of its eigenvalues. Nikiforov (2007) defined the energy of a matrix A to be the sum of the singular values of A (the positive square roots of the eigenvalues of the p-s-d symmetric matrix AA^T):

$$E(A) = \sigma_1 + \sigma_2 + \cdots,$$

and gave a general upper bound for $E(A)$ which for digraphs with q edges becomes:

$$E(D) \leq \frac{q}{n} + \sqrt{(n - 1) \left(q - \frac{q^2}{n^2}\right)}$$

Peña and Rada (2008) gave another definition of energy—called here **low energy**—using eigenvalues not singular values:

\[
e(D) = \sum_{i=1}^{n} |\text{Re}(\lambda_i)|.
\]

Coulson’s integral formula for energy of graphs is extended to low energy of digraphs and the McClelland identity is extended:

\[
e(D) \leq \sqrt{\frac{n(m + c_2)}{2}},
\]

where \(c_2\) is the number of closed walks in \(D\) of length 2. Equality holds if and only if \(D\) is the direct sum of \(n/2\) copies of \(K_2\).
Peña and Rada (2008) gave another definition of energy—called here **low energy**—using eigenvalues not singular values:

\[e(D) = \sum_{i=1}^{n} |\text{Re}(\lambda_i)|. \]

Coulson’s integral formula for energy of graphs is extended to low energy of digraphs and the McClelland identity is extended:

\[e(D) \leq \sqrt{\frac{n(m + c_2)}{2}}, \]

where \(c_2 \) is the number of closed walks in \(D \) of length 2. Equality holds if and only if \(D \) is the direct sum of \(n/2 \) copies of \(K_2 \).
Chung (2005) introduced **Laplacians** of (strongly connected) digraphs D. Outdegrees: r_1, r_2, \ldots, r_n; Indegrees: s_1, s_2, \ldots, s_n. Let $P = [p_{ij}]$ be the matrix of order n defined by

$$p_{ij} = \begin{cases} \frac{1}{r_i} & \text{if } (v_i, v_j) \text{ is an edge}, \\ 0 & \text{otherwise}. \end{cases}$$

P is the (irreducible) transition matrix of a random walk on D (all row sums are 1 and $\rho(P) = 1$), and P has a unique, normalized left eigenvector ϕ for 1: $\phi P = \phi, \sum_{i=1}^{n} \phi_i = 1$.

$$L(D) = I_n - \frac{\phi^{1/2} P \Phi^{-1/2} + \Phi^{-1/2} P^T \phi^{1/2}}{2},$$

where Φ is the diagonal matrix $\text{diag}(\phi_1, \phi_2, \ldots, \phi_n)$.
Chung (2005) introduced **Laplacians** of (strongly connected) digraphs D. Outdegrees: r_1, r_2, \ldots, r_n; Indegrees: s_1, s_2, \ldots, s_n. Let $P = [p_{ij}]$ be the matrix of order n defined by

$$p_{ij} = \begin{cases} \frac{1}{r_i} & \text{if } (v_i, v_j) \text{ is an edge}, \\ 0 & \text{otherwise}. \end{cases}$$

P is the (irreducible) transition matrix of a random walk on D (all row sums are 1 and $\rho(P) = 1$), and P has a unique, normalized left eigenvector ϕ for 1: $\phi P = \phi$, $\sum_{i=1}^{n} \phi_i = 1$.

$$\mathcal{L}(D) = I_n - \frac{\Phi^{1/2} P \Phi^{-1/2} + \Phi^{-1/2} P^T \Phi^{1/2}}{2},$$

where Φ is the diagonal matrix $\text{diag}(\phi_1, \phi_2, \ldots, \phi_n)$.

NIU LA’09, DeKalb, August 12–14, 2009
Chung (2005) introduced **Laplacians** of (strongly connected) digraphs \(D \). Outdegrees: \(r_1, r_2, \ldots, r_n \); Indegrees: \(s_1, s_2, \ldots, s_n \). Let \(P = [p_{ij}] \) be the matrix of order \(n \) defined by

\[
p_{ij} = \begin{cases}
\frac{1}{r_i} & \text{if } (v_i, v_j) \text{ is an edge,} \\
0 & \text{otherwise.}
\end{cases}
\]

\(P \) is the (irreducible) transition matrix of a random walk on \(D \) (all row sums are 1 and \(\rho(P) = 1 \)), and \(P \) has a unique, normalized left eigenvector \(\phi \) for 1: \(\phi P = \phi, \sum_{i=1}^{n} \phi_i = 1 \).

\[
\mathcal{L}(D) = I_n - \frac{\Phi^{1/2} P \Phi^{-1/2} + \Phi^{-1/2} P^T \Phi^{1/2}}{2},
\]

where \(\Phi \) is the diagonal matrix \(\text{diag}(\phi_1, \phi_2, \ldots, \phi_n) \).
Chung (2005) introduced **Laplacians** of (strongly connected) digraphs D. Outdegrees: r_1, r_2, \ldots, r_n; Indegrees: s_1, s_2, \ldots, s_n.

Let $P = [p_{ij}]$ be the matrix of order n defined by

$$p_{ij} = \begin{cases} \frac{1}{r_i} & \text{if } (v_i, v_j) \text{ is an edge,} \\ 0 & \text{otherwise.} \end{cases}$$

P is the (irreducible) transition matrix of a random walk on D (all row sums are 1 and $\rho(P) = 1$), and P has a unique, normalized left eigenvector ϕ for 1: $\phi P = \phi$, $\sum_{i=1}^{n} \phi_i = 1$.

$$\mathcal{L}(D) = I_n - \frac{\Phi^{1/2} P \Phi^{-1/2} + \Phi^{-1/2} P^T \Phi^{1/2}}{2},$$

where Φ is the diagonal matrix $\text{diag}(\phi_1, \phi_2, \ldots, \phi_n)$.

NIU LA’09, DeKalb, August 12–14, 2009
If D is a symmetric digraph (a graph), then $\phi = \frac{1}{d}(r_1, r_2, \ldots, r_n)$ where $d = \sum_{i=1}^{n} r_i$. $\mathcal{L}(D)$ is the symmetric matrix $I_n - XAX$ where A is the adjacency matrix of D and

$$X = \text{diag} \left(\frac{1}{\sqrt{r_1}}, \frac{1}{\sqrt{r_2}}, \ldots, \frac{1}{\sqrt{r_n}} \right).$$

Thus, the Laplacian of a symmetric digraph is the so-called normalized Laplacian. $\mathcal{L}(D)$ is a singular, positive semidefinite symmetric matrix with eigenvalues $\lambda_0 = 0 \leq \lambda_1 \leq \cdots \leq \lambda_n$, called the Laplacian eigenvalues or Laplacian spectrum of D.
Theorem (Chung 2006): The diameter of D is at most

$$\left\lfloor \frac{2 \min \left\{ \log \left(\frac{1}{\phi_i} \right) : 1 \leq i \leq n \right\}}{\log \frac{2}{2-\lambda_1}} \right\rfloor + 1,$$

where $\phi = (\phi_1, \phi_2, \ldots, \phi_n)$ is the left positive (normalized) eigenvector of the transition matrix P for the eigenvalue 1.

(This generalizes upper bounds on diameter of a graph using eigenvalues.)
Theorem (Chung 2006): The diameter of D is at most

$$\left\lfloor \frac{2 \min \left\{ \log \left(\frac{1}{\phi_i} \right) : 1 \leq i \leq n \right\}}{\log \frac{2}{2-\lambda_1}} \right\rfloor + 1,$$

where $\phi = (\phi_1, \phi_2, \ldots, \phi_n)$ is the left positive (normalized) eigenvector of the transition matrix P for the eigenvalue 1.

(This generalizes upper bounds on diameter of a graph using eigenvalues.)