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Abstract. We consider the n-th eigenvalue as a function on the space of self-
adjoint regular Sturm-Liouville problems with positive leading coefficient and weight

functions. The discontinuity of the n-th eigenvalue is completely characterized.

Consider a self-adjoint regular Sturm-Liouville problem (SLP) with positive leading

coefficient and weight functions, i.e.,

(0.1) —(py")" + qy = Awy on (a,b),
yga)
0.2 (alm) | P <o

y(b)
(py") (D)

where

(0.3) —oo<a<b< oo, 1/p, q, w € L((a,b),R), p,w > 0 a.e.on (a,b),

(0.4) (A| B) € M}, (0), A(_Ol (1)>A*:B<_01 (1)>B*,

and A € Cis the so called spectral parameter of (0.1). Here L((a, b), R) denotes the space of
Lebesgue integrable real functions on (a,b), M3, ,(C) stands for the set of 2 by 4 matrices
over C with rank 2, and A* is the complex conjugate transpose of the complex matrix A. It
is well-known that the eigenvalues of the problem can be ordered to form a non-decreasing

sequence
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(0.5) Ao, A1, A2, Az, -

approaching +o0o so that the number of times an eigenvalue appears in the sequence is
equal to its multiplicity. Hence, for each n € Ny =: {0,1,2,---}, A, is a function defined
on the space of such SLP’s. Everitt, Moller and Zettl have shown in [5] that in general,
A, does not depend on the problem continuously. They have shown, among other things,
that Ao has an infinite jump when the differential equation (DE) in the SLP is fixed and
the boundary condition (BC) in the problem approaches the Dirichlet BC in a certain way.
Thus, a natural question arises: what is the discontinuity set of A, 7 This is the main
question that we want to address in this paper.

Recently, a lot of progress has been made in computing the eigenvalues of SLP’s and
of higher order eigenvalue problems (see, for example, [2], [6] and [1]). In principle, the
eigenvalues of such a problem can be computed as the zeros of the characteristic function of
the problem with a root finder. For the SLP consisting of (0.1) and (0.2), one is interested
in both the values and the indices of the eigenvalues. For example, after computing an
eigenvalue, we want to know which one it is, i.e., whether it is Ag or A\; or Asg3. To figure
out the indices of these eigenvalues is a rather difficult task, since sometimes the first few
eigenvalues are not computable. From the theoretical point of view, these indices can be
determined in terms of the Priifer transformation for the case of separated BC’s and with
the inequalities recently established in [4] for the case of coupled BC’s. In most of the
algorithms for computing such eigenvalues, it is necessary to approximate the problem
in question, i.e., to approximate the interval and coefficient functions of the DE in the
problem and to approximate the coefficient matrix of the BC in the problem. So, in
usual numerical computation, we only obtain the eigenvalues of an approximate problem
which are hopefully close to the eigenvalues of the original problem. However, in general,
these eigenvalues of the approximate problem and the desired eigenvalues of the original
problem do not have the same set of indices. Thus, in order to have an algorithm for
determining the indices in computing, one needs a way to approximate the given SLP
so that the indices stay invariant, i.e., the indices do not jump. The jumps in indices
correspond precisely to the discontinuity of ), considered as a function of the problem.
Therefore, the question investigated in this paper not only is of obvious theoretical interest
but also has strong computational motivation. The results of this paper provide parts of
the theoretical foundation for codes, such as Sleign2 [ 1 ], for computing eigenvalues together

with their indices.



For each n € Ny, we characterize the set of SLP’s at which \,, is discontinuous. The
discontinuity is always a jump, i.e., in some directions, either A\g or both A\g and A; jump
to continuous eigenvalue branches coming from —oo and the other A,’s jump to the other
continuous eigenvalue branches accordingly. At any such problem, we also identify the
directions (in the space of SLP’s considered) in which the value of A, jumps. In particular,
we show that \,, depends continuously on the DE in the SLP. We then determine the range
of A\, on the space of self-adjoint BC’s and use it to obtain the possibilities for the number
of zeros of a corresponding eigenfunction in the case of coupled BC’s. We also comment
on the differentiability and analyticity of A,, at an SLP where it is continuous and has
multiplicity 1. We then give an example to demonstrate that a multiplicity assumption
is necessary in general for the differentiability of A\,, with respect to any parameter of the
SLP.

This paper is organized as follows. In Section 1, we recall some basic results, describe
the space of SLP’s considered, and prove a principle for the continuity of A,,. Section 2 is
devoted to proving the continuous dependence of A,, on the DE in the SLP. In Section 3,
we give a complete characterization of the discontinuity of A,,. In Section 4, the range of
A, on the space of self-adjoint BC’s is obtained and then used to determine the number of
zeros of an eigenfunction for A,. Finally, in Section 5, we comment on the differentiability
and analyticity of A\, and give a related example.

Throughout this paper, we always assume that the DE (0.1) satisfies (0.3) and the
BC (0.2) satisfies (0.4).

§1. Notation and Prerequisite Results

In this section we recall some basic results, describe the space of self-adjoint regular
SLP’s with positive leading coefficient and weight functions, and prove a principle for the
continuity of the n-th eigenvalue as a function on the space of SLP’s considered.

For each A € C, let ¢11(-,A) and ¢12(-, A) be the solutions to (0.1) determined by the

initial conditions

(1.1) ¢11(a,A) = 1, (pg11)(a,A) =0 and  ¢1a(a,A) =0, (pd12)(a,A) =1,

respectively. We will denote p@; by ¢21 and pd}, by ¢aa. Set

(1.2) B(t,\) = (2;8 ig z;zg: ig) teab], AeC.
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Here the values of ®(-,A) at a and b are defined by right and left limits, respectively. For
each t € [a,b], ®(¢,\) is an entire matrix function of A. Moreover, ®(¢,\) € SL(2,R) for
t € [a,b] and A € R. The following result is well-known, see [13] or [4].

Theorem 1.3. The Sturm-Liouville problem consisting of (0.1) and (0.2) has an infi-
nite number of eigenvalues, and they are all real and bounded from below. Moreover, the

ergenvalues are the zeros of the characteristic function
(1.4) A(X) =: det(A + B®(b, A))

of the problem and hence do not have a finite accumulation point.

Thus, as mentioned in the introduction, the eigenvalues of the problem can be ordered

to form a non-decreasing sequence
(15) AO, )‘15 )‘21 )‘31

approaching +o0o so that the number of times an eigenvalue appears in the sequence is
equal to its multiplicity. Note that by Theorem 4.16 in [8], the algebraic and geometric
multiplicities of each eigenvalue of the SLP consisting of (0.1) and (0.2) are equal. So, in
this paper we are not going to distinguish these two concepts and the word multiplicity
will be used for either of them. Moreover, when counting the number of eigenvalues in a
given interval, we will always assume that the eigenvalues are counted according to their
multiplicities.

In the work [4] on Sturm-Liouville eigenvalues, the following representations of the
solutions to the DE (0.1) is of crucial importance. We will need these formulas to study

the discontinuity of the n-th eigenvalue.

Theorem 1.6. There exist A, € R, k > 0 and a continuous function
(1.7) a: [a,b] x (—oo, As] = [0, 00)

such that a(t,\) is decreasing in A for each t € (a,b], ai(t,\) exists a.e. on [a,b] for each
A € (=00, A, (pa!)(t, A) = p(t)au(t, N) is continuous on [a,b] for each X € (—oo, A\.],

(1.8) lim «a(t,A) = oo, lim p(t)a(t,\) = 0o

A——00 A——00
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for each t € (a,b], and

(1.9) b11(t, A) = k cosh(a(t, ),
(1.10) b1a(t, \) = /?12 d11(t, \) /a t SeChZ;(O;()S’ M) g,

(1.11) ba1(t,A) = & (pa’) (£, A) sinh(a(t, A)),

(1.12) boa(t, A) = 1?12 bo1 (£, A) at mﬁ#ds + %sech(a(t, )

on [a, b] X (—00, A].

In order to discuss the dependence of the eigenvalues of a self-adjoint SLP on the
problem, we need to know how to measure the closeness of two DE’s of the form (0.1) and
how to measure the closeness of two self-adjoint BC’s. These two questions are discussed
in the next several paragraphes.

If the DE (0.1) is abbreviated as (a, b, 1/p, g, w), then the space of DE’s used in self-
adjoint regular SLP’s with positive leading coefficient and weight functions can be written

(1.13) Q= {(a,b,1/p,q,w); (0.3) holds}.

Bold faced lower case Greek letters, such as w, will be used to stand for elements of 2. A
natural topology on €2 is the product topology induced from the usual topologies on R and
on L(R,R). More precisely, given € > 0, each (ao, bo, 1/po, go, wo) € Q with finite ag and
bo has a neighborhood in Q consisting of the elements (a, b, 1/p, ¢, w) satisfying

+oo —
(1.14) |a—a0|+\b—bo\+/ ([1/p = 1/po| + | — qo| + |@ — o) <e,

— o0
where % is the extension of 1/p to R that is equal to 0 on R\ (a, b) and 17170, q, qo, W, Wo
have similar meanings; each (—oc, bg, 1/po, qo, wo) €  with finite by has a neighborhood
in Q formed by the elements (a, b, 1/p, g, w) satisfying

1 oo — -
(1.15) a< -3, |b—bo|+/ (|1/p = 1/po| + 17— qo| + |@ — wo|) < 6;

— 00

and etc. This topology has already been used in [10] and [7]. We note that €2 is path

connected.



It is convenient to have DE’s defined on finite intervals. For this reason, we consider

the substitution

(1.16) t=1t(s) = /_s f(r)dr,

where f € LT(R,R) =: {f € L(R,R); f > 0 a.e.on R}. After this substitution, the DE
(0.1) is transformed to the DE

a7) = (P Sule(sD) + FE)alt(e)y(t(s) = A (s)u(e(s)y(e(s)) on (.

where

(1.18) c:/_aoo f(s)ds and d:/_boo f(s)ds

are finite. This defines a transformation from €2 into itself, which will be called the canonical

transformation corresponding to f.

Proposition 1.19. Let f € LT(R,R). Then, the canonical transformation from Q into
itself corresponding to [ is continuous, and all the transformed differential equations are

on finite intervals.

PROOF. The first claim can be verified directly using the definitions, while the second one

has been mentioned above. B

REMARK 1.20. After the substitution (1.16), the linear system corresponding to (0.2)

reads
(t( %(Z(C))
P t(cc) —Sy(t(c)) .
(1.21) (A|B)| ¢ y(;fi(d)) =0.
pgct((;))) %y(t(d))

Thus, the substitution (1.16) does not change the coefficient matriz of any BC.

Following [8], we will take the quotient space

(1.22) arL(2, ©)\Mzxs(C)

as the space of BC’s, i.e., each BC is an equivalence class of coefficient matrices of linear

systems such as (0.2), and the BC represented by the linear system (0.2) will be denoted
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by [A| B]. Note here that square brackets, not parentheses, are used. Usual bold faced
capital Latin letters, such as A, will also be used for BC’s. The space BS of self-adjoint real
BC’s consists of the separated real BC’s and the coupled real BC’s of the form [K | — I]
with K € SL(2,R). By Theorem 2.18 in [8], B is a connected and compact analytic

3-dimensional manifold. It can be obtained by “gluing” the open sets

(1.23) 1s = 0ss ={[K| —1I]; K € SL(2,R)},
R _ J|1 a2 0 ax|.
(1.24) 2,5 = { 0 g -1 bzz} ; G12,022,b22 € R} )
(1.25) 35 = [1 a2 —ax 0], aiz, az2,b21 € R
3,5 _0 a99 b21 -1 3 ’ ’
(1.26) Of g = o 10 —an | ai1,a21, b2 € R
4,S | ag 0 —1 b22 ’ ’ ’ ’
(1.27) b = o 1 oan 0], ai1, G21,b21 € R
5,5 | a9, 0 by -1 ’ ) ’

via the coordinate transformations among these open sets. Note that the topology on
SL(2,R) is the one induced from the usual topology on the set Maya(R) of 2 x 2 matrices
over R, and each of the four open sets in (1.24)-(1.27) can be identified with R3. A
complex BC [A | B] is self-adjoint if and only if either [A| B] is real with det A = det B
or [A|B] = [¢?K | — I] with § € (0,7) and K € SL(2,R). By Theorem 2.25 in [8], the
space BF of self-adjoint complex BC’s is a connected and compact analytic 4-dimensional

real manifold. It can be obtained by “gluing” the open sets

(1.28) Ofs=05s={[“K| - I] 0 €0,7), K € SL(2,R)}
(1.29) OSS = { (1) 022 01 bZ ; a12 € R A (C boo € R}
’ I - 22 |
c -1 a12 —z 0 ] .
(130) 03 g = 0 2 b 117 a1z € R, z € (C,bgl eR
’ | 21 —1]
(131) OE,S — { 0’21:1 (1) _01 b_2§ ; apl € R z € (C bao € R}
(1.32) Og’s = { a’;l (1) bjl _01 a1 ER,z€ C by € R}

via the coordinate transformations among these open sets. Note that the topology on the
open set in (1.28) is the one induced from the usual topology on Ma,5(C), and each of the
four open sets in (1.29)—(1.32) can be identified with R*.
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Therefore, Q x BS is the space of self-adjoint regular SLP’s with positive leading
coefficient and weight functions. For every (w,A) € Q x B§ and every n € Ny, A\, (w, A) is
well-defined. When the DE is fixed, we will also use A, (4) for A € BS and A, (e?K) for
0 € (—m,w], K € SL(2,R); when the BC is fixed, we will also use A\, (w) for w € Q, and
etc.

Let w € Q. For K € SL(2,R), we use {un(w, K); n € Ny} to denote the eigenvalues
of the SLP consisting of w and the separated BC

(1 0 0 0
10 0 koo —ki2|’

and {v,(w, K); n € Ny} the eigenvalues of the SLP cons1st1ng of w and the separated BC

[0 1 0 0
0 0 —kor ki’

Here and in the rest of this paper, when a capital Latin letter stands for a matrix, the

(1.33)

(1.34)

entrices of the matrix are denoted by the corresponding lower case letter with two indices.
Note that p,(w, K) = pn(w, —K) and v, (w, K) = v, (w, —K) for any n € Ny. When w is
fixed, we sometimes abbreviate y,(w, K) and v, (w, K) as u,(K) and v, (K), respectively.
In the following result from [4] and the rest of this paper, for any integer £ > 2 and any
k numbers c1, ca, ..., ¢k, the notation {c1,ca, - ,cx} with bold faced braces means each

of c1, ca, ..., Ck-

Theorem 1.35. Fix a differential equation in 2, and let K € SL(2,R).
a) If k11 > 0 and k12 < 0, then \o(K) is simple, and for any 6 € (—mw,m), 0 # 0, we

have

(1.36) vo(K) < Ao(K) < Mo(e’K) < Ao(—K) < {o(K), 1 (K)}
< AM(=K) < M(eK) < M (K) < {p1(K),va(K)}
< Xo(K) < X2 K) < do(=K) < {pa(K),v3(K)}
< A3(—K) < A3(e”K) < A3(K) < {us(K),va(K)} <

b) If k11 <0 and k12 < 0, then A\o(K) is simple, and for any 0 € (—7,7), 0 # 0, we

have

(1.37) Xo(K) < Xo(€?K) < o(—K) < {po(K),vo(K)} <
M(=K) < M(ePK) < M(K) < {m(K),n(K)} <
Ao(K) < Xa(€“K) < Ao(—K) < {p2(K), va(K)} <
A3(—K) < A3(e’K) < A3(K) < {ps(K),va(K)} < -
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c) If neither Part a) nor Part b) applies to K, then either Part a) or Part b) applies
to —K.

For the proof of the principle on the continuity of A,, we will need the following
generalization, to the case of Q x BS, of Theorem 3.32 in [8], which is only for the case of

BS.

Theorem 1.38. Let (w,A) € Q x BS. Assume that 1 and o, 71 < 12, are any two real
numbers such that neither of them is an eigenvalue of (w,A), and n > 0 is the number of
eigenvalues of (w, A) in the interval (r1,r2). Then there exists a neighborhood O of (w,A)

in Q x BS such that any (o, B) € O also has ezactly n eigenvalues in (r1,72).

PROOF. The claim on each of the open sets in (1.28)—(1.32) is a direct consequence of the
continuous dependence of the solution (as an analytic function of the parameter A varying
in a compact interval) to an initial value problem for a DE in 2 on the problem [13],

Rouché’s Theorem [3] and Theorem 1.3. i

REMARK 1.39. The conclusion of Theorem 1.38 also holds without the assumption
that the leading coefficient is positive. Moreover, there are analogous results for general

regular SLP’s and similar eigenvalue problems of higher order.

To conclude this section, we prove the following theorem, which will be called the

Continuity Principle in the rest of the paper.

Theorem 1.40. Let O be a subset of Q x BS. If Ao is uniformly bounded from below on

O, then the restrictions of the eigenvalues to O are all continuous.

PROOF. Let r1+1 be a uniform lower bound for the eigenvalues on O, (w,A) € O, and n > 2
an arbitrary integer such that A,(w,A) # Apt1(w,A). Fix r2 € (Ap(w, A), Apt1(w, 4)).
By Theorem 1.38, when (o, B) € O is sufficiently close to (w, A), (o, B) has exactly n + 1
eigenvalues in (r1,73). Since Ag(o, B) > r1, these n + 1 eigenvalues of (o, B) are the first
n + 1. By separating the non-equal ones of A\g(w,A), A1 (w,A), ..., \p(w,A) using small
open intervals in (r1,72) and then applying Theorem 1.38 to these open intervals, we see
that Ag(o, B) is close to Ag(w,A) for £ =0, 1, ..., n when (o,B) € O is sufficiently close
to (w,A). Thus, the restrictions of Ag, A1, ..., Ay to O are continuous at (w,A). W
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By the Continuity Principle, at any point of Q x BS where one of the \,’s is discon-
tinuous, A\g must approach —oo in some way.
The proof of the following result is similar to that of Theorem 1.40 and hence is

omitted.

Theorem 1.41. If O is a subset of Q x B, (w,A) ¢ O is an accumulation point of O,

(1.42) lim An(0,B) = —c0

0>5(6,B)—(w,A)
forn=0,1, ..., m, where m € Ny, and A\, +1 is uniformly bounded from below on O, then
(1.43) lim An(0,B) = Ap—m—1(w, A)

03(o,B)—(w,A)

forn=m+1,m+2 m+3, ..

§2. Continuous Dependence of )\,, on the Differential Equation

In this section, we prove the continuous dependence of A, on the DE in the SLP.
Our proof given here is based on the concept of continuous eigenvalue branch and the
inequalities (1.36), (1.37).

Theorem 2.1. For any n € N, the n-th eigenvalue of a reqular Sturm-Liouville problem
with positive leading coefficient and weight functions and a fixed self-adjoint boundary

condition depends continuously on the differential equation in the problem.

PROOF. By Proposition 1.19 and Remark 1.20, we only need to show the continuity of A,
at each DE with a finite interval for n € Ny.

First, we consider the case where the self-adjoint BC A is a separated one, i.e., A
is a separated real BC. Let wg = (ao, bo, 1/po, go, wo) € 2 with finite ag and bg. Then,
Ao(wo) is simple. Consider the continuous eigenvalue branch A through Ag(wo) defined on
a neighborhood O of wy in 2. We can assume that the DE’s in O have finite intervals.
Let wy = (a1,b1,1/p1,q1,w1) € O. For each s € (0,1), we define

(2.2) as = (1 —8)ag+ sa, ¢qs(t) = (1—5)qo(t) + sqi(t) for t € (as,bs),

while b, 1/ps and w, are defined similarly. Then, w, =: (as, bs, 1/ps, ¢s, ws) € Q. More-

over, wy; € O when w; is sufficiently close to wg, which will be assumed. By Theorem 3.2
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in [10], there is a normalized eigenfunction (-, s) for A(ws), s € [0,1], such that u(t, s)

and ps(t)u/(t, s) are continuous functions on
(2.3) {(t,s) e R* s€[0,1],t € [as,bs]}.

Note that u(-,0) does not have a zero in (ag, bp). So, we may assume that u(t,0) > 0 on
(ag, bp). Since the BC is fixed, there exists an € > 0 sufficiently small such that for any
s €[0,1],

(2.4) u(t,s) >0 on (as,as +e€) U (bs — €,bg).

If u(-,s) has a zero in (as,bs) for some s € (0,1], then the smallest value ¢ of such s
exists, we have p.u'(tp,c) = 0 at each zero to of u(-,c) since u(t,c) > 0 on [a, b.], and
hence u(-,c) = 0, which is impossible. Thus, u(-,1) does not have a zero in (a1, b1), i.e.,
A(wy) = Ao(wy). Therefore, Ag is continuous at wy € €2, and Ay, A2, A3, ... are also
continuous at wy € 2 by the Continuity Principle.

Next, assume that the self-adjoint BC is the coupled one A = [¢?? K | — I], where
0 € [0,7) and K € SL(2,R) with either k1; > 0, k12 < 0 or k13 < 0, k12 > 0. Then
vo(w, K) depends continuously on w € €2 by the proven case. On the other hand, by Part
a) of Theorem 1.35,

(2.5) v(w, K) < A\ (w, A)

for any w € Q2 and n € Ny. Hence, the eigenvalues for A are uniformly bounded from below
near any fixed w € ). Therefore, the Continuity Principle implies that for each n € Ny,
An(w, A) depends continuously on w € Q.

Finally, we consider the case where the self-adjoint BC is the coupled one A = [’ K | —
Ilor B = [-e®K| — I] with § € [0,7) and K € SL(2,R) satisfying k1; < 0, k12 <
0. By Part b) of Theorem 1.35, A\o(w,A) is simple for any w € Q. Fix an wy € Q
and consider the continuous simple eigenvalue branch A through A\g(wo, A) defined on a
connected neighborhood O of wg in . By Part b) of Theorem 1.35 again, A(wg) =
Ao(wo,A) < vo(wo, K) and A(w) # vo(w, K) for any w € O. Hence, we have A(w) <
vo(w, K) for any w € O, since both A and vy are continuous functions on O. Therefore,
Xo(-;A) = A on O still by Part b) of Theorem 1.35, i.e., Ag(:,A) is continuous on O.
Moreover, A;(-,A), Aa(-, A), A3(-,A), ... and Ao(-, B), A1(-,B), A2(+, B), ... are continuous
at wp by Part b) of Theorem 1.35 and the Continuity Principle. i
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§3. Discontinuity of )\,

In this section, we characterize the discontinuity set of A, as a function on 2 x B§ or
Q x B§ and determine the behavior of A, near each discontinuity point.

Firstly, let us fix a differential equation (a,b,1/p,q,w) € Q and characterize the
discontinuity of A, as a function on B or BS. The following result is a consequence of
Theorem 1.6.

Lemma 3.1. For any two positive constants ¢ and €, there exists a A, such that for any
A< A,

(3.2) d11(D,A) > ¢, ¢12(b,A) >0, ¢21(b,A) > ¢, da22(b,A) >0,
b11(b, V) b12(b, N) d12(b, N) $a(b, V)
(8:3) 50N = SN T SN - GmN)

PROOF. This is a direct consequence of Theorem 1.6 together with the fact

(3.4) lim b sech?(a(s, \))

ds=0
Ao—oo J, p(s) 5

deduced from it and the Bounded Convergence Theorem. i

The following are some continuity results about A, on BS. In this context, we will use

the notation

(3.5) FZ={[K|-1]; K €SL(2,R), kiuiki» <0},
R _ (a1 1 0 —r )

(3.6) g_—{_r 0 1 bQ}, by < 0, al,reR},
(3.7) R — (1 ay —r 0 . 4y <0, burER

' - 0 7 by —1] =% 0, )
(3.8) IR = (1 a2 0 ", a9,by <0, 7 € R, ashy > r?

) a _0 T -1 b2 ’ 272 =1 y B2V2 — 3
(3.9) J*={[K| -1]; K eSL(2,R), ki =0}

a1 a9 0 0 R, _
U{|:0 0 bl b2:|€BS, asz—O}.

Proposition 3.10. Let n € Ny. Then, as a function on the space BS of self-adjoint real

boundary conditions, X\, is continuous at each point not in JX.
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PROOF. First, fix K = [K | — I] € B§ \ J®. Set
(3.11) c:2max{\k11\,|k21\,|k22|}, d= |]{712|.

Then, ¢,d > 0. By Lemma 3.1, there is a A, such that for any A < A,,

RS S i o i O
If L = [L| — I] € BE satisfies
(3.13) |l1a] > g and  {|l11], [la1], |l22|} < c,
then for any A < A,,
(3.14) IALN)| = [2 = la2¢11(N) + 11612(A) + liapa1 (X) — Loz (V)|
> (|112\ i (A) +lz;f11(z§;\) +lu¢zz(/\)|)¢21()\) _ 9
> 1.

Thus, by Theorem 1.3, Ao(L) > A, for any L € BS sufficiently close to K. The Continuity
Principle then assures that A, is continuous at K.

Next, let us consider

I 1 0 0 R R
(3.15) A_[O 0 b _1]€BS\J.

Then A has a neighborhood in B§ given by (1.27) and for any
c 1 » 0
(3.16) B = |:7. 0 d _1:|
in that neighborhood,
(3.17) AB(A) = —2r —dg11(A) + (cd — 7%)12(A) + $21(A) — caz(N).

Thus, as in the previous case, we see that ), is continuous at A. |l

Proposition 3.18. For every n € Ny, the restriction of X\, to each of F*, G®, H® and

IR is continuous.
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PROOF. First, fix K = [K| — I] € F®. If k1o # 0, then ), is continuous at K by
Proposition 3.10. Assume that k12 = 0 and k11 > 0. Set

(319) c:2max{k11,|k21|,|k22\}.

Then, ¢ > 0. By Lemma 3.1, there is a A, such that for any A < A,,

[$12(N)]

(3.20) $11(A) > 12¢, SOV

< $21(A) > 0,  ¢22(A) > 0.

1
4c2’

When L =[L| —I] € F2 is sufficiently close to K, we have

1
(3.21) l11 >0, ~ 9 <l12<0, {l, |lza], |l22|} < ¢,
and hence
(3.22) ll>l>1 ll—1—|—ll>1 l>1>1
. 12021 > clya 2 11l22 = 12l21 > <, 22> 9= > 50
Thus, for such an L and any A < A,,
(3.23) AL(A) =2 = la¢11(A) + 21912 (A) + 112021 (A) — l11022(A)
lla112(N)]
< P21712 )1 _
<2+ ( PRGN l22>¢11()\) < -1,

which and Theorem 1.3 imply that Ag(L) > A.. Therefore, the Continuity Principle

assures that A, is continuous at K. The case where k19 = 0 and k17 < 0 can be

7B
handled similarly.

Next, let us consider

_lar 1 0 —r R
(3.24) A_[T 0 —1 bQ]eg_.

If r # 0 and by # 0, then

3.25 a2 B 10
= r r
(3:25) [ L0 -1

and A, is continuous at A by Proposition 3.10; if » # 0 and b = 0, then A, | GR is continuous

at A by the proven case; if r = 0 and bs # 0, then A, is continuous at A also by Proposition

14



3.10. So, we now assume that » = 0 and by = 0. By Lemma 3.1, there is a A, such that
for any A < A,

(3.26) d11(A) > 6,  Pa1(A) >0, az(A) >0,

(3:27) ) S T ) S SmaalT)

When

(3.28) B= [2 (1) _01 _ds] eg?

is sufficiently close to A, we have

(3.29) le| < 2max{|aq|,1}, |s] <1, d<0.

Thus, for such a B and any A < A,

(3.30) AB(N) = d11(N) — h1a(A) — dor(X) + (52 + cd)an (A) — 25
> (1= 22006000 — d(im () ~ ledna(3)) 2

1
> 5@511()\) —-2> 1,

which and Theorem 1.3 imply that A\g(B) > A.. Therefore, the Continuity Principle
assures that )\n‘ gR is continuous at B.

Finally, the continuity of )\"|”HR and A\, ‘IIR can be proved by similar arguments. |l
For each a € [0,7) and 3 € (0, 7], let

cosa —sina 0 0

(3.31) Sap = 0 0 cosB —sinf |’

Then, the set 7 of separated real BC’s consists of these S, g’s and is topologically a torus.
The following result is part of the theorem in [ 5], which is proved using some derivative

formulas in [10] and the Priifer transformation.

Lemma 3.32. As a function of (o, B), An(Sa,) is continuous on [0,7) x (0, ], strictly

decreasing in o, and strictly increasing in 3. Moreover, for each o € [0, 7),

(3.33) lim Ag(Sq,p) = —o0, lim A, (Sap) =An—1(Sar) forn €N,
B—0t

B—0t

15



and for each 8 € (0, ],

(3.34) lim Ao(Sqap) = —o0, lim A,(Sag) = An—1(So) for n € N.

a—>TmT a—rmT

Note that the continuity claim in Lemma 3.32 is a consequence of Propositions 3.10
and 3.18.

In order to describe the discontinuity of A, on BS, we let

(3.35) Fi=0¢s\FE,  GF=05s\G", L =055\ HE,
1 ay O T

(3.36) Iﬂ'ﬁ:{[o .1 bJ; az,by >0, 7 € R, a2b2>7"2},

(3.37) Iy = Oy \ (ZE UTY).

Note that the coupled BC’s in J® are all in F®, and
(3.38) TNT=(T*NG)U(T*NHE)u{D},

where D is the Dirichlet BC.

Theorem 3.39. The function Ay on BS is continuous on B§ \ J* and discontinuous at
each point of J*. Forn € N, the function A, is continuous on BE\ J* and at each coupled
boundary condition in J* where A\, = An_1 and discontinuous at any other point of J®.
More precisely, for each coupled boundary condition A € J®, the restriction of A, to FX

is continuous at A for n € Ng and

(3.40) lim  Ao(B) = —o0, lim  A,(B) =\,—1(A) forn € N;
FR>5B—A F¥sB—-A

for each A € J® N GR, the restriction of A\, to G is continuous at A for n € Ny and

(3.41) lim Ag(B) = —o0, lim A,(B)=A,—1(A) forn € N;
GR>5B—A GR>B—A

for each A € JRNHR | the restriction of A\, to H® is continuous at A for n € Ny and

(3.42) lim Ag(B) = —o0, lim A,(B)=M\,—1(A) forn € N;
HRSB—A HRSB—A

16



while the restriction of A\, to I® is continuous at the Dirichlet boundary condition D for

n € Ny and
(3.43) lim Mo(B) = lim X\(B)=—o0,
I§UIT>B—D I%5B—D
(3.44) lim  An(B) = A_1(D) forn €N,
IX5B—D
(3.45) lim  A,(B) = A\p—2(D) forn > 2.
IEBB—)D

PROOF. By Theorem 4.12 in [8], the eigenvalues for a separated real BC are all simple.
Thus, by Propositions 3.10 and 3.18, we only need to prove (3.40)—(3.45).

Fix a K € SL(2,R) with k11 > 0 and k12 = 0. When L = [L| —I] € F% is sufficiently
close to K = [K | —I] € J%, we have l1; > 0 and l;2 > 0. Part b) of Theorem 1.35 implies

(3.46) Ao(L) < {po(L),vo(L)} < Au(L),

where p0(L) and vg(L) are the first eigenvalues for the separated BC’s

(3.47) 1 0 0 o]and [010 0

0 0 la2 —li2 0 0 —log l11 |’
respectively. By Lemma 3.32, po(L) — —oo and vy(L) — vo(K) as L in F% approaches
K, since then [, — 0+, log — koo > 0 and 117 — k11 > 0. Thus,
(3.48) lim  Ao(L) = —o0, lim A (L) = A1 (K) forn € N
FRSL-K FRSL-K
by Theorem 1.41. Similarly, we prove (3.40) for K € SL(2,R) with k1; < 0 and k12 = 0.
Next, let

a1 1 0 0

(3.49) A:[O 0 -1 o

] e J*NgGE.

By Theorem 4.12 in [8], the eigenvalues for A are all simple. Fix an integer m > 2. Then,
there is a neighborhood O of A in B such that ONG® and ONGY are connected, and the
continuous simple eigenvalue branches Ag, Ay, ..., A,, through A\g(A), A1 (A), ..., A, (A) are
defined on O. By Proposition 3.18, the restriction of each A, to G® is continuous, which

and the simplity of A,, imply that if B € O N G®, then



for n =0, 1, ..., m. By Proposition 3.10, each X, is continuous on G%. There exist 7 > 0
and d > 0 such that

2 _lax 1 0 -—r
(3.51) a1s+r° >0, B, =: [ r 0 -1 s } €0
for s € [0, d]. Since
ajs+r2 s 1 0
(3.52) B, = [ a:_l g 0 _1]

for s € [0, d], the element By of 7* N G® is also in J® N FE, and the element B, of G¥ is
also in F% for s € (0,d]. Thus, from (3.50) with B = By, the proven case, the simplity of
A, and the continuity of A,41 on G% one deduces that A, (B;) = Apt1(B;) for n =0, 1,
..., mand s € (0,d]. The simplity of A,, and the continuity of A\,41 on G§ then imply that

for n =0, 1, ..., m and B € O N GY. Therefore, we have

(3.54) im  An(B) = An_1(A)
G%>B—A

for n = 1, 2, ..., m + 1, which and the simplicity of Ay imply the other limit in (3.41).
Similarly, one proves (3.42).

Finally, by Theorem 4.12 in [8], the eigenvalues for D are all simple. Fix an integer
m > 2. Then, there is a neighborhood O of D in Bg such that ONZE, ONZy and ONZE are
connected, and the continuous simple eigenvalue branches Ag, A1, ..., A, through A\o(D),
M (D), ..., Ay (D) are defined on O. By Proposition 3.18, if B € O NZ*, then

for n =0, 1, ..., m. For n € Ny, Proposition 3.10 implies that )‘n|;rR\jR and Ap| g are
0 +
continuous. By the definitions (3.8), (3.9), (3.36) and (3.37),

(356) Ig\jR:{[(l) a7‘2 01 b’l“:|’ ag,bQ,’FER, a2b2<r2},
- 2
" g J[1 aa 0 7] azby>0,a3+b3>0
(357) IO mj - {|:0 r _1 b2:| ) rc R, U,ng — ,',,2 .
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If

|1 az 0 r ”
(3.58) B= [0 ro—1 b2] €0ss
satisfies ag > 0, then
m 10 g
(3.59) B = g L] wmber? ;

if B given by (3.58) satisfies by > 0, then

by —12 T
(360) B = [1 = 52 - b12 0 :| .
T
0 -5 5 -1

Thus, for n € Ny, A\, ‘IR is continuous at each point of Z§ N J* by Proposition 3.18. Hence,
0

from the proven cases we deduce the following: if B € O NZf, then
(3.61) A, (B) = A1 (B) for n=0,1,...,m;
if B e ONZY, then

(3.62) An(B) = Apy2(B) for n=0,1,...,m.

Iy

Therefore, we have proven (3.44) forn =1, 2, ..., m+ 1 and (3.45) forn =2, 3, ..., m + 2,
which and the simplicity of Ay imply (3.43).

19



In order to to describe the discontinuity of ), as a function on BS, we set

(3.63) FE={[e®K| —1]; K €SL(2,R), ki1k12 <0, 6 € [0,7)},
¢ J[ar 1 0 —z2]
(3.64) g__{_z 0 1 bz]’ bzgo,aleR,zeC},
(3.65) ge = {1 a2 0T 0 b eR zeC
. _ _O r bl -1 2>Y, U1 ) ’
(3.66) FE =055\ FE, G5 =05s\05,  H =055 \HE,
1 a2 0 2], -
(3.67) I¢ = { 0 2 -1 b2] : a2,by <0, z€C, asby > zz},
(1 a2 O z _
(3.68) Iﬁ = { 0 2 -1 bz] i ag, by >0, z€C, ashy > zz},
3.69) I5 = O35\ (ZEUIY),
(3.70) J ={[e®K| —1I]; K €SL(2,R), ki2=0, 6 €[0,7)}

ay Qa2 0 0 R, _
U{[O 0 b1 b2:|€BS, Clzbz—()}.

Note that the separated BC’s in J¢ other than the Dirichlet BC are in G& U H®. The
proofs of the following results are similar to those of Propositions 3.10, 3.18 and Theorem

3.39, so we omit them.

Proposition 3.71. Let n € Ny. Then, as a function on the space BS of self-adjoint

complex boundary conditions, \, s continuous at each point not in JC.

Proposition 3.72. For every n € Ny, the restriction of A\, to each of F<, G, HE and

IC is continuous.

Theorem 3.73. The conclusions of Theorem 3.39 still hold when the super indices R in
them are replaced by C.

REMARK 3.74. By Theorems 3.1 and 4.16 in [ 8], the complex self-adjoint BC’s having

double eigenvalues are
(3.75) [®(b,A) | — I, AeR
All of them are real and coupled.

Finally, we give the characterization of the discontinuity of A, as a function on the

space Q x BE or Q x BS.
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Theorem 3.76. a) The function Ao on Q X B§ is continuous on Q x (B \ J*) and
discontinuous at each point of Q x J®. For n € N, the function \, 1s continuous on
Qx (B§\ J*) and at each problem with a coupled boundary condition in J* where A, =
An—1 and discontinuous at any other point of Q x J®. More precisely, for each problem
(w,A) € Q x J® with a coupled boundary condition A, the restriction of A\, to Q x F® is

continuous at (w,A) for n € Ny and

(3.77) lim Xo(o, B) = —00,
QxFR>5(o,B)—(w,A)
(3.78) lim An(0,B) = \p—1(w, A) forn € N;

QX.’FEB(O‘,B)—)(&J,A)

for each problem (w,A) € Q x J* with A € J* N GE, the restriction of A\, to Q x G¥ is

continuous at (w,A) for n € Ny and

(3.79) lim Xo(o, B) = —00,
QxGR3(0,B)—(w,A)
(3.80) lim An(0,B) = \_1(w, A) forn € N;

QxGR3(0,B)—>(w,A)

for each problem (w,A) € Q x J®* with A € J*NHE, the restriction of A\, to Q x H® is

continuous at (w,A) forn € Ny and

(3.81) lim Xo(o,B) = —0,
QxHES(0,B)—(w,A)
(3.82) lim A(o,B) = \_1(w, A) forn € N;

QxHE3(0,B)—(w,A)

while for each problem (w,D) with the Dirichlet boundary condition D, the restriction of
An to Q@ X I® is continuous at (w, D) for n € Ny and

(3.83) lim Xo(o,B) = lim A1(o,B) = —o0,
Qx(ZRuIR)3(0,B)—(w,D) QxI%>3(e,B)—(w,D)
(3.84) lim A(o,B) = A\—1(w, D) forn €N,
QxIX3(0,B)— (w,D)
(3.85) lim An(0,B) = \p_a(w, D) forn > 2.

%5 (0,B)— (w,D)

b) The conclusions of a) still hold when all the super indices R in them are replaced
by C.
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PROOF. Here we only prove the first claim of a), while the other claims of the theorem can
be shown similarly.

Let (w,A) € Q x B be a problem with a coupled boundary condition A not in
J*®. Since the case where \g(w,A) has multiplicity 1 is simpler, we will assume that the

multiplicity of Ao(w, A) is 2. Set

(3.86) = oW, A) =2, = %)\l(w,A) + §A2(w,A),

(3.87) rs = Ao(w,A) =1, 4= g)\l(w,A) + %)\g(w,A).

Then, r9 > r4. By Theorem 1.38, there are a connected neighborhood N7 of w in © and
a connected neighborhood N of A in Og g\ J* such that each (o,B) € N =: N1 x Ny
has exactly two eigenvalues in (r1,r2) and they are in (r3,r4). Theorem 2.1 implies that
Xo(o,A) and A\i(o,A) are continuous functions of ¢ € Q. Thus, for each o € N7, the
eigenvalues \o(0, A) and \{(a, A) of (6, A) must be the two in (r3,74). Fix ae € N;. From
Theorem 3.39 we see that Ag(o, B) and A (o, B) are continuous functions of B € Og g\ J*.
So, for each B € N, the eigenvalues \o(o, B) and A (o, B) of (¢, B) must be the two in
(rs,r4). Therefore, Ag, A1, Ag, ... take values in (r3, +00) on N and hence are continuous

on N by the Continuity Principle. i

REMARK 3.88. In addition to Theorems 2.1 and 3.39, the above proof basically only

uses the local uniqueness of continuous eigenvalue branches deduced from Theorem 1.38.

§4. Ranges of )\, on B§ and B§

Fix a differential equation in € and consider A, as a function on B§ or B§. In this
section, we first find the ranges of A, on B§ and B, respectively, and then use these ranges
to determine the possibilities for the number of zeros of an eigenfunction for A,,.

Recall that A\, (e?? K) = A, ([e? K | — I]) for any [¢?® K | — I] € BS and let AD be the
value of \,, at the Dirichlet BC.

Theorem 4.1. a) The range of \,, on the space Bg of self-adjoint real boundary conditions
is (=00, A1 if n =0 or 1, and (\P_,, \P] if n > 2.

b) For each n € Ny, the range of A, on the space BS of self-adjoint complex boundary

conditions is the same as that of A, on BS.

22



PROOF. a) By Lemma 3.28, we have the following:

(4.2) sup A (4) = A, (So.x) = AP n e Ny,
AcT
(43) )\n(S()’g) > lim An(SO,'y) = An_l(S()’ﬂ-)
v—0t
- )\E_l, ,6 E (O,ﬂ-], n E N,
9 = gt (B 0(Sus)
- Oglgf;w A0(‘5'04,7r) = —00,
(5) @ = 1t (L 2 (Ses)
= i =)D >
Oglgf;w )\n—l(Sa,'/r) )\n—27 n = 27

and the infimum in (4.5) is not achieved. By Theorem 1.35, for any K € SL(2,R), there
exists a § € (0, 7] such that

(4.6) A (K) < Aa(S04) < Ang1(K), neNp.

Clearly, (4.2)-(4.6) imply our claims.
b) By Theorem 1.35 again, if § € (0,7) and K € SL(2,R), then for each n € Ny,

(4.7) M(E) < A(ePK) < A(=K)  or  A(—K) < M(e?K) < M (K).

Therefore, the conclusions here are direct consequences of those in Part a). Wi

Note that the suprema of A\, on B and B have been obtained in Corollary 3.1 of

[4]. As an application of Theorem 4.1, we prove the following results.

Theorem 4.8. a) Let K € SL(2,R) and u,, be a real eigenfunction for A\,(K). Then the
number of zeros of up, on [a,b) is 0 or 1 ifn =0, andn—1 orn orn+1 ifn> 1.

b) Let 6 € (0,7), K € SL(2,R) and u, be an eigenfunction for A\, (e K). Then the
number of zeros of Reu, on [a,b) is 0 or 1ifn =0, andn—1 orn orn+1ifn > 1. The

same conclusion holds for Imu,,. Moreover, u, is never zero on [a,b].

PROOF. a) Let v, be a real eigenfunction for \P. Then, v,, has n + 2 zeros on the interval
la,b], and v,(a) = v,(b) = 0. Thus, the conclusion follows from Part a) of Theorem 4.1

and the Sturm Comparison Theorem.
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b) Note that Rew, and Imuw, are nontrivial solutions to the fixed DE (0.1) with
A = A\, (e?? K). Thus, the conclusions on them follow from Part b) of Theorem 4.1 and the
Sturm Comparison Theorem. Since A, (e?® K) does not have a real eigenfunction, Re u,,
and Imu, are linearly independent on (a,b), and hence, Reu, and Imwu,, do not have a

common zero on [a, b]. Therefore, u,, does not have a zero on [a, b]. I

We note that even though Part a) of Theorem 4.8 has been known, its existing proof

involves operator theory (see, for example, [12]).

REMARK 4.9. Each of the possibilities given by Theorem 4.8 is realized in some

examples.

§5. Comments on Differentiability of A,

In this section, we first briefly discuss the differentiability or analyticity of A,, and an
important application of these properties, then give an example related to these properties.
Since we now know where )\, is continuous, the derivative formulas in [9], [10] and
[8] for continuous eigenvalue branches yield derivative formulas for A, with respect to the
parameters defining the SLP. To give an example, let n € No, wo = (a0, bo, 1/po, g0, wo) € 2
and A € B§. Assume that )\, is simple and continuous at (wo, A). By Theorems 1.39 and

3.76, A, is simple and continuous on a neighborhood of (wg, A) in Q x B§. Consider

(51) )\n(b) = )\n((ao, b, 1/])0, qo, ’wo),A) for b € (0,(), bo],

then A, (b) is simple on (by — 6, bo] and differentiable a.e. on (by — 9, by for some 6 > 0,

and

(5.2) An(b) = — p()%b)\(:Do'td))(b)l2 + [up(5)|*(90(b) — An(D)wo (b))

a.e.on (bg — 4, bg], where uy is an eigenfunction for A, (b) satisfying f;o lup|?w = 1. By

Theorem 4.1 in [8], when we change A only, A\, depends on A analytically. Moreover,

each of the derivative formulas also holds under the assumption that the multiplicity of A,

is always 2 when the corresponding parameter varies on an open subset of its domain.
From the above derivative formulas one can deduce some monotone properties of A,

with respect to the parameters 1/p, ¢ and w of the SLP. (When considering monotone

24



properties of A\, with respect to w, we need to take the sign of A, into account.) To give
an example, let us fix a self-adjoint boundary condition. If wy = (a,b,1/p1,q,w) € Q and

wy = (a,b,1/pa, q,w) € Q satisfy

(5.3) p1(t) < pa(t) a.e.on (a,b),
then for each n € Ny, we have

(5.4) An(w1) < Ap(w2).

Next, we give an example to show that the multiplicity of the n-th eigenvalue can
change when an end point of the interval in the DE varies and that in general, the n-th
eigenvalue is not differentiable when its multiplicity changes. There are similar examples
for the other parameters in the DE, and such examples can also be used in the discussion

of the differentiability of continuous eigenvalue branches.

EXAMPLE 5.5. By Theorem 2.1, the n-th eigenvalue A, (b) of the SLP
—y" =Xy on (0,b

(56) (;%) = (_Og ) (5%)

is a continuous function of b > 0. It is easy to see that

~—

o 3

(5.7) No(1) = A (1) = (gf (1) > 72

Thus, when b is sufficiently close to 1, Ag(b) and A;(b) are the zeros of

(5.8) Ap(N) = 2 — (2%\ + %X) sin(bv/A)

in (0,72), i.e., the solutions to

4bme (bV/\)
b2 4 4(bv/X)2

(5.9) sin(bV/\) =

in (0,72). When b # 1 is sufficiently close to 1,

(5.10) by/ M (D) € (%g) b/ e (D) € (g 3—”)



and hence Ag(b), A1(b) are simple. Then, by (5.2), Ao(-) and A;(+) are strictly decreasing

functions on (1 — §,1 + §) for some § > 0. In particular,
7\ 2

(5.11) A (D) > Ao(b) > (5) for be (1—4,1),
N 2

(5.12) Mo(b) < Ai(b) < (5) for be (1,1 + 4).

When b < 1 is sufficiently close to 1, (5.9) together with (5.11) and (5.12) yield

(5.13)  cos(0Ae®) =1— =2 cos(by/MB) = 21,

w244 (b)’ 72 + 4X1 (b)
and hence
3 3
14 P17y = —— 17 )= ——"
(5.14) Ao(17) oA 1(17) SY—
Similarly,
3 3
5.15 Nt =——" Ny =——"_.
(5.15) o(17) CP—y 1(17) Gy

Therefore, A\g(-) and A;(-) are not differentiable at 1.

In general, as a function on BS, A, is also not differentiable at a self-adjoint BC where

it is continuous and has multiplicity 2, see the example given in Section 7 of [7].
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