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Abstract. The geometric multiplicity of each eigenvalue of a self-adjoint Sturm-Liouville problem
is equal to its algebraic multiplicity. This is true for regular problems and for singular problems
with limit-circle endpoints, including the case when the leading coefficient changes sign.

1. Introduction

The equivalence between the algebraic and geometric multiplicities of any eigenvalue of regular
self-adjoint Sturm-Liouville problems (SLP’s) was recently established by Eastham, Kong, Wu and
Zettl in [8] Theorem 4.2 for coupled boundary conditions and by Kong, Wu and Zettl in [18]
Theorem 5.5 for separated boundary conditions.

In this paper we prove this equivalence for self-adjoint singular SLP with limit-circle (LC) end-
points. This for endpoints which are nonoscillatory or oscillatory and for a leading coefficient which
may change sign.

The geometric multiplicity of an eigenvalue is the dimension of its eigenspace i.e. the number of
its linearly independent eigenfunctions. For SLP this number is either one or two. The algebraic
multiplicity is defined in terms of a characteristic function. This is a function whose zeros are
precisely the eigenvalues of the problem. The order of a zero is the algebraic multiplicity of the
corresponding eigenvalue. For regular problems there is a standard, natural, and well known
construction of such a characteristic function [24]. This construction depends on the fact that
all solutions of the equation and their quasi-derivatives exist, at least as finite limits, at regular
endpoints. Since this is not true for singular problems, the extension of this construction to the
singular case is not routine. Bailey, Everitt and Zettl [3] gave a construction for the case of coupled
boundary conditions (BC) and positive leading coefficient, but did not consider the question of the
equivalence between the algebraic and geometric multiplicities.

The (regular or singular) characteristic function depends on the equation and the boundary con-
ditions. Hence it is necessary to discuss the self-adjoint BC. We do this in some detail, particularly
for the less well known singular case. For this case, since the solutions and their quasi-derivatives
are, in general, not defined at the endpoints, the BC are defined with the aid of a ‘Lagrange form’.
This form utilizes a pair of maximal domain functions, which we designate as a ‘BC basis’, to
‘steer’ all solutions for all values of the spectral parameter to finite limits at the endpoints. The
BC and the characteristic function are defined in terms of these limits. This raises the question
of the dependence of the BC and the characteristic function on the BC bases. We also study this
question in some detail.

Further, we give a detailed proof of the canonical representation of the coupled regular and
singular boundary conditions. Although these representations have been used by other authors [2],
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[24] we don’t know of a detailed proof in the literature. A characterization of all real self-adjoint
Sturm-Liouville operators is derived from this canonical representation of the BC.

For an application of the equivalence between the algebraic and geometric multiplicities of eigen-
values of regular and singular Sturm-Liouville problems to Lagrange interpolation series, see the
paper by Everitt and Nasri-Roudsari [12]; for another application to the approximation of singular
problems by regular ones see [19].

The organization of this paper is as follows: This introductory section is followed by a discussion
of regular problems in Section 2. Section 3 contains statements of the main results for singular prob-
lems with proofs postponed to Section 4. A canonical form of singular coupled boundary conditions
and a corresponding (alternative) characteristic function which is analogous to the characteristic
function used in Floquet theory for regular problems, are discussed in Section 5.

2. Regular Endpoints

Although our primary focus is on singular limit-circle endpoints we review the regular case in
this section for the convenience of the reader and because the singular case will be based on it. We
consider the equation

(2.1) My = −(py′)′ + qy = λwy on J = (a, b), −∞ ≤ a < b ≤ ∞, λ ∈ C,
and assume, throughout this section, that the coefficients satisfy

(2.2)
1
p
, q, w ∈ L1(J,R), w > 0 a.e. on J.

Remark 2.1. Under condition (2.2) both endpoints and the equation are said to be regular. Note
that a = −∞ or b =∞ have not been ruled out; this contrasts with much of the literature, including
Naimark [22], where an infinite endpoint is automatically classified as singular. As the next lemma
will show, the significance of an endpoint being regular is that all solutions, together with their
quasi-derivatives, have finite limits at such an endpoint and can therefore be continuously extended
to this endpoint. This is not true at a singular endpoint [13]. Thus this seems to us to be a natural
meaning of ‘regular’.

Remark 2.2. Note that no sign restriction is placed on p. The reason for the sign restriction on w
is so that the well developed and beautiful operator theory in the weighted Hilbert space H = L2(J,w)
can be applied.

Lemma 2.1. Let (2.2) hold and let d = a or d = b. Then the limits

y(d) = lim
t→d

y(t), (py′)(d) = lim
t→d

(py′)(t)

both exist and are finite for any solution y of the nonhomogeneous equation

−(py′)′ + qy = f, f ∈ L1(J).

Proof. See [24], for the last statement see [13]. �

Let A,B ∈M2(C), the set of 2× 2 matrices over C, satisfy the following conditions:

(2.3) rank(A|B) = 2;

(2.4) AEA∗ = BEB∗, E =
[

0 1
−1 0

]
.
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When written in terms of components condition (2.4) becomes

a11a22 − a12a21 = b11b22 − b12b21

a11a12 − a12a11 = b11b12 − b12b11

a21a22 − a22a21 = b21b22 − b22b21

a22a11 − a21a12 = b22b11 − b21b12.

We consider the two point BC:

(2.5) AY (a) +BY (b) = 0, Y =
(

y
py′

)
.

Definition 2.1. A complex number λ is an eigenvalue of the (SLP) (2.1), (2.5) if the equation
(2.1), for this value of λ, has a nontrivial solution y which satisfies the BC (2.5).

It turns out that the eigenvalues can be characterized as the zeros of an entire function called a
characteristic function of the problem.To construct such a function it is convenient to consider the
system form of equation (2.1):

(2.6) Y ′ = (P − λW )Y on J,

where

(2.7) Y =
(

y
py′

)
, P =

[
0 1/p
q 0

]
, W =

[
0 0
w 0

]
.

For each λ ∈ C and each s, a ≤ s ≤ b, let Φ(·, s, λ) be the fundamental matrix of (2.7) determined
by the initial condition

(2.8) Φ(s, s, λ) = I

where I denotes the identity matrix. Define

(2.9) δ(λ) = det(A+BΦ(b, a, λ)), λ ∈ C.
We can now state

Lemma 2.2. (1) For each t, s with a ≤ t, s ≤ b, and each λ ∈ C, Φ(t, s, λ) is well defined and
for fixed t, s, Φ(t, s, λ) is an entire function of λ.

(2) A number λ is an eigenvalue of the SLP (2.1), (2.5) if and only if δ(λ) = 0.

Proof. This is well known, see [24]. �

Proposition 2.1. Let (2.2) to (2.4) hold. Then all eigenvalues of the SLP (2.1), (2.5) are real
and there are an infinite but countable number of them. Moreover,

(1) If p > 0 a.e. on J, then the eigenvalues are unbounded above but bounded below and can be
ordered and indexed to satisfy

−∞ < λ0 ≤ λ1 ≤ λ2 ≤ ...
where equality cannot occur in two consecutive terms.

(2) If p changes sign, then the eigenvalues are unbounded above and below and can be ordered
and indexed to satisfy

... ≤ λ−2 ≤ λ−1 ≤ λ0 ≤ λ1 ≤ λ2 ≤ ...
In this case the index is not unique; one way to define it uniquely is to define λ0 to be the
smallest nonnegative eigenvalue.
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Proof. This is well known, see [24]. �

Based on Lemma 2.2 we can now define the algebraic multiplicity of an eigenvalue.

Definition 2.2. The algebraic multiplicity of an eigenvalue λ of the SLP (2.1), (2.5) is the order
of it as a root of the characteristic equation δ(λ) = 0.

Theorem 2.1. Let (2.2) to (2.4) hold and suppose that λ is an eigenvalue of (2.1), (2.5). Then the
algebraic and geometric multiplicities of λ are the same. In particular, λ is a simple eigenvalue (i.e.
its geometric multiplicity is one) if and only if δ(λ) = 0 and δ

′
(λ) 6= 0; the geometric multiplicity

of λ is two if and only if δ(λ) = 0, δ
′
(λ) = 0 and δ

′′
(λ) 6= 0. No eigenvalue has an algebraic or

geometric multiplicity greater than 2. Furthermore, the geometric (and therefore also the algebraic)
multiplicity of an eigenvalue λ is two if and only if the BC (2.5) is equivalent to the condition with

(2.10) B = −I and A = Φ(b, a, λ).

Proof. This is proved in [18] Theorem 5.5 for separated BC and in [8] Theorem 4.2 for coupled BC
under the additional hypothesis that p is positive. However the proof given in [8] is valid without
this additional hypothesis and therefore we will not repeat the details here. The furthermore
statement is proved in Theorem 4.1 of [16] . �

Remark 2.3. We comment on the furthermore statement and (2.10). Clearly the homogeneous BC
(2.5) is invariant under multiplication on the left by a nonsingular matrix. Since all eigenvalues
are real, A is real and, by Abel’s Theorem det Φ(b, a, λ) = 1. So any given real number λ is a
double eigenvalue for exactly one boundary condition satisfying (2.3), (2.4), namely the one given
by (2.10).

Lemma 2.3. The matrices satisfying the self-adjointness conditions can be classified into two
mutually exclusive classes. Let A,B ∈M2(C) satisfy (2.3), (2.4).

(I) Suppose A is singular. Then (2.4) implies that B is singular and (2.5) can be represented as
follows:

A1y(a) +A2(py′)(a) = 0, A1, A2 ∈ R, (A1, A2) 6= (0, 0);
B1y(b) +B2(py′)(b) = 0, B1, B2 ∈ R, (B1, B2) 6= (0, 0).(2.11)

These conditions are called separated and have the canonical representation

cos(α)y(a)− sin(α)(py′)(a) = 0, 0 ≤ α < π;
cos(β)y(b)− sin(β)(py′)(b) = 0, 0 < β ≤ π.(2.12)

(The slightly different normalization for α and β is for convenience in studying the continuous
dependence of the eigenvalues on α and β.)

(II) Assume A is nonsingular. Then (2.4) implies that B is nonsingular and (2.5) has the
canonical representation:

(2.13) Y (b) = eiγK Y (a), Y =
(

y
py′

)
, −π < γ ≤ π, K = (kij), kij ∈ R, detK = 1.

Proof. This is elementary, but since we don’t know of a detailed proof of (2.13) in the literature,
we give one here. We have that (2.5) is equivalent with CY (a) − Y (b) = 0 where C = −B−1A.
Note that (2.3) and (2.4) hold with A replaced by C and B by −I. In other words, in this case
we can assume that B = −I. For simplicity we continue to use the notation C = A and B = −I.
Then A is nonsingular, hence a11a21 6= 0 and a21a22 6= 0.
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Condition (2.4) becomes

a11a22 − a12a21 = 1
a11a12 − a12a11 = 0
a21a22 − a22a21 = 0
a22a11 − a21a12 = 1.(2.14)

Set

(2.15) ajr = eiγjrkjr, kjr ∈ R, −π < γjr ≤ π, j, r = 1, 2.

Then k11k12 6= 0 and k21k22 6= 0.
From a11a12 = a12a11 it follows that

ei(γ11−γ22)k11k12 = e−i(γ11−γ22)k11k12

and hence γ11 = γ12. Similarly we get γ21 = γ22. From this and from the first and last equations of
(2.15) we get

(2.16) ei(γ11−γ22)[k11k22 − k21k12] = 1 and e−i(γ11−γ22)[k11k22 − k21k12] = 1.

Thus we may conclude that

γ11 = γ22 = γ12 = γ21 and detK = k11k22 − k21k12 = 1.

�

We illustrate one theoretical application of the canonical representation of the coupled BC (2.13)
by characterizing all real self-adjoint extensions of the minimal operator.

Definition 2.3. Suppose S is a symmetric densely defined linear operator in a Hilbert space H. A
linear operator T, with domain D(T ), is called a real self-adjoint extension of S if T is a self-adjoint
extension of S with the following properties:

(1) g ∈ D(T ) implies g ∈ D(T ) ,
(2) T (g) = Tg.

Corollary 2.1. Let Smin denote the minimal operator associated with (2.1) and let S be a self-
adjoint extension of Smin in the weighted complex Hilbert space H = L2(J,w) determined by a BC
(2.5) with A,B satisfying (2.3), (2.4). Then S is a real self-adjoint extension of Smin in H if its
domain D(S) is given by either (i) a separated BC (2.12) or (ii) a coupled BC (2.13) with γ = 0.
(Note that γ = π reduces to γ = 0 by replacing K by −K.)

Proof. This follows directly from the representations (2.12) and (2.13) and the reality of the coef-
ficients of equation (2.1). �

The next theorem gives an alternative characterization of the eigenvalues for coupled BC in terms
of a different characteristic function used in Floquet theory [7], [23].

Definition 2.4. Let B = −I and A = eiγK, −π < γ ≤ π, K ∈ SL(2,R), i.e. K = (kij), kij ∈ R,
detK = 1. Define for λ ∈ C,
(2.17) D(λ,K) = k11φ22(b, a, λ) + k22φ11(b, a, λ)− k12φ21(b, a, λ)− k21φ12(b, a, λ).

Theorem 2.2. Let (2.2), (2.13), (2.17) hold. Then λ is an eigenvalue of the SLP (2.1), (2.13) if
and only if

(2.18) D(λ,K) = 2 cos(γ).
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Proof. Note that det Φ(b, a, λ) = 1 by Abel’s Theorem since trace(P − λW ) = 0. Expanding (2.9)
and letting Φ = (φij) = (φij(b, a, λ)) we get

δ(λ) = det[eiγK − Φ(b, a, λ)]

=
∣∣∣∣ eiγk11 − φ11 eiγk12 − φ12

eiγk21 − φ21 eiγk22 − φ22

∣∣∣∣ (b, a, λ)

= [(eiγk11 − φ11)(eiγk22 − φ22)− (eiγk12 − φ12)(eiγk21 − φ21)](b, a, λ)

= {e2iγ [k11k22 − k12k21]− eiγ [k11φ22 + k22φ11 − k12φ21 − k21φ12] + φ11φ22 − φ12φ21}(b, a, λ)

= e2iγ − eiγD(λ,K) + 1.

Dividing by eiγ we obtain

e−iγδ(λ) = eiγ + e−iγ −D(λ,K) = 2 cos(γ)−D(λ,K).

The conclusion follows from part (4) of Lemma 2.2. �

3. LC Endpoints

Proofs of results stated in this section will be given in Section 4. We study boundary value
problems for the equation

(3.1) My = −(py′)′ + qy = λwy on J = (a, b), −∞ ≤ a < b ≤ ∞, λ ∈ C,
with coefficients which are only locally Lebesgue integrable:

(3.2)
1
p
, q, w ∈ Lloc(J,R), w > 0 a.e. on J.

In this case the equation (3.1) and its equivalent system (2.6) may be singular at the endpoints a
or b.

Definition 3.1. Let (3.2) hold and let c ∈ J. The endpoint a of the underlying interval J is said to
be in the limit-circle case, or a is LC for short, if for some λ ∈ C, all solutions of equation (3.1) are
in L2((a, c), w). Similarly, the endpoint b of J is LC, if for some λ ∈ C, all solutions of equation
(3.1) are in L2((c, b), w).

Remark 3.1. It is clear from (3.2) that the LC classification is independent of the point c ∈ J.
Also it is well known [24] that if all solutions of (3.1) are in L2((a, c), w) for some λ ∈ C, then this
is true for all λ ∈ C. Similarly for the endpoint b. Therefore the LC classification at each endpoint
is independent of c and of λ and depends only on the behavior of the coefficients p, q, w near that
endpoint.

Remark 3.2. Note that we include regular endpoints in the LC classification; this is done for
simplicity of exposition only. The case when both endpoints are regular is discussed in Section 2
above, so in this section we focus on the cases when one or both endpoints are LC singular.

(3.3) Throughout this paper we assume that each endpoint is LC.

Our main goal in this paper is to prove that the geometric multiplicity of each eigenvalue is
equal to its algebraic multiplicity. Since the algebraic multiplicity is defined in terms of a charac-
teristic function we must first construct such a function. Note that the construction of the regular
characteristic function δ(λ) given by (2.9) does not make sense here since the fundamental matrix
Φ(b, a, λ) is not defined, in general, at a limit circle endpoint a or b. Similarly the BC (2.5) does



STURM-LIOUVILLE EIGENVALUES 7

not make sense, in general, at a limit circle endpoint. We overcome these obstacles by replacing the
entries of Φ with Lagrange sesquilinear forms which exist as finite limits at all limit-circle endpoints.

We start with a representation of self-adjoint BC. This depends on a ‘BC basis’ at each endpoint.
In general these bases are different at the two endpoints.

Let

(3.4) Dmax = {f ∈ H = L2(J,w) : f, pf ′ ∈ ACloc(J), w−1Mf ∈ H}

Of critical importance to the description self-adjoint boundary conditions is the Lagrange sesquilin-
ear form given by

(3.5) [f, g] = fpg′ − gpf ′, (f, g ∈ Dmax).

Observe that the Green’s formula:

(3.6)
∫ β

α
{gMf − fMg} = [f, g](β)− [f, g](α), (f, g ∈ Dmax; α, β ∈ J),

holds and that it follows from (3.6) that the limits

(3.7) lim
β→b−

[f, g](β) ; lim
α→a+

[f, g](α)

exist and are finite for all f, g ∈ Dmax, and in particular, for all solutions y of (3.1) for any λ ∈ C.

Definition 3.2. A pair of real-valued functions {f, g} is called a (BC) basis at a if f, g ∈ Dmax

and satisfy [g, f ](a) = 1. Similarly a pair of real-valued functions {h, k} is called a BC basis at b if
h, k ∈ Dmax and satisfy [k, h](b) = 1.

Such BC bases exist: just take real-valued linearly independent solutions of (3.1) for any par-
ticular real value of λ and normalize their Wronskian to be 1 to get a basis for both endpoints.
Or, more generally, take real-valued linearly independent solutions of (3.1) for some real λ = λa on
some interval (a, c), c ∈ J and normalize their Wronskian to be 1; then take real-valued linearly
independent solutions of (3.1) for some real λ = λb on some interval (d, b), d ∈ J and normalize
their Wronskian to be 1. But note that, while this construction provides a plethora of BC bases in
terms of solutions, such bases, in general, need not be solutions near the endpoints. For example
f, g might be constructed from the first term of the asymptotic expansion of solutions when solu-
tions are not known in closed form for any λ, see Examples 2 and 4 of the SLEIGN2 code [1] for
an illustration.

Let {f, g} be a BC basis at a and {h, k} a BC basis at b. For matrices A,B ∈M2(C) we consider
the boundary condition

(3.8) A

(
[y, f ](a)
[y, g](a)

)
+B

(
[y, h](b)
[y, k](b)

)
=
(

0
0

)
.

Definition 3.3. A complex number λ is an eigenvalue of the SLP (3.1), (3.8) if the equation (3.1)
has a nontrivial solution y, for this value of λ, satisfying the BC (3.8).

Note that for any λ and any solution y of (3.1) it is meaningful to ask the question of whether
the BC (3.8) is satisfied since the Lagrange brackets [y, f ], [y, h] etc exist as finite limits at LC
endpoints.

Proposition 3.1. Let (3.2), (3.3) hold. Let {f, g} be a BC basis at a and {h, k} a boundary
condition basis at b and let matrices A,B ∈M2(C) satisfy (2.3), (2.4). Then all eigenvalues of the
SLP (3.1), (3.8) are real and there are an infinite but countable number of them.
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For a fixed BC basis {f, g} at a the Lagrange brackets [y, f ](a, λ), [y, g](a, λ) exist as finite
limits for any solution y of (3.1) for any λ. Can these brackets assume arbitrary values and is their
dependence on λ analytic?

Lemma 3.1. Let (3.2), (3.3) hold. Let {f, g} be BC basis at a. Let c, d ∈ C. For any λ ∈ C there
exists a unique solution y = y(·, λ) of (3.1) such that

(3.9) [y, f ](a, λ) = c and [y, g](a, λ) = d.

Furthermore the brackets [y, f ](t, λ) and [y, g](t, λ) exist and are entire functions of λ for any
fixed t, a ≤ t ≤ b. There is a similar result for the endpoint b.

Remark 3.3. The unique solution y(·, λ) of (3.1) satisfying (3.9) is defined on the open interval
(a, b) but not, in general, at the endpoints a, b. Thus [y, f ](a, λ) may be viewed as a substitute for
y(a, λ); similarly [y, g](a, λ) may be viewed as a replacement for (py′)(a, λ). Note that we are using
the notation [y, f ](a, λ) for [y(·, λ), f ](a), etc. If a is regular, then f, g can be chosen so that
[y, f ](a, λ) = y(a, λ) and [y, g](a, λ) = (py′)(a, λ). Similar remarks apply at the endpoint b.

Theorem 3.1. Let the hypotheses and notation of Proposition 3.1 hold. Let ψ1 = ψ1(·, λ), ψ2 =
ψ2(·, λ) be the unique solutions of (3.1) satisfying, for each λ ∈ C,

(3.10) [ψ1, f ](a, λ) = 1 and [ψ1, g](a, λ) = 0; [ψ2, f ](a, λ) = 0 and [ψ2, g](a, λ) = 1.

Define for all λ ∈ C ,

(3.11) ∆(λ) = det
(
A+B

(
[ψ1, h] [ψ2, h]
[ψ1, k] [ψ2, k]

))
(b, λ).

Then ∆ is an entire function, and λ is an eigenvalue of the SLP (3.1), (3.8) if and only if ∆(λ) = 0.

Definition 3.4. The function ∆(λ) given by (3.11) is a characteristic function of the SLP (3.1),
(3.8). The algebraic multiplicity of an eigenvalue λ is the order of it as a root of the characteristic
equation ∆(λ) = 0. We write ∆(λ) = ∆(λ,A,B) to indicate the dependence of ∆ on A,B.

Theorem 3.2. Let the hypotheses and notation of Theorem 3.1 hold. Then the geometric multi-
plicity of any eigenvalue is equal to its algebraic multiplicity.

4. Proofs

The proofs of Lemma 3.1 and Theorems 3.1, 3.2 will be based on several more lemmas. In (3.8)
how do A,B change when the boundary condition bases are changed ? To help answer this question
we first establish a lemma, see Fulton [14], Littlejohn and Krall [21]. This Lemma will be used
repeatedly below.

Lemma 4.1. Let y, z, u, v ∈ Dmax. If [v, u](a) = 1 then

(4.1) [y, z](a) = [y, v](a)[z, u](a)− [y, u](a)[z, v](a).

Similarly, if [v, u](b) = 1 then

[y, z](b) = [y, v](b)[z, u](b)− [y, u](b)[z, v](b).
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Proof. We prove (4.1), the proof for the endpoint b is similar. Note that

[y, z] = (z, pz′)
(

0 −1
1 0

)(
y
py′

)
= (z, pz′)

(
(pv′) (pu′)
−v −u

)(
−(pu′) u
(pv′) −v

)(
y
py′

)
= (−[v, z],−[u, z])

(
−[y, u]
[y, v]

)
= [y, v][z, u]− [y, u][z, v](4.2)

holds for each t in some neighborhood of a. Take the limit as t → a on both sides of (4.2) to get
(4.1). �

The next result is the ‘change of BC bases theorem’, it describes how the BC change when the
bases change, see Theorem 3.3 in [17].

Theorem 4.1. Let the notation and hypotheses of Proposition 3.1 hold. Assume that {f1, g1} and
{h1, k1} are other BC bases at a and b, respectively. Let

(4.3) A1 = AC, C =
(
−[f, g1](a) [f, f1](a)
−[g, g1](a) [g, f1](a)

)
, B1 = BD, D =

(
−[h, k1](b) [h, h1](b)
−[k, k1](b) [k, h1](b)

)
.

Then (3.8) is equivalent to

(4.4) A1

(
[y, f1](a)
[y, g1](a)

)
+B1

(
[y, h1](b)
[y, k1](b)

)
=
(

0
0

)
.

Proof. This follows from a direct computation using Lemma 4.1. �

Proof of Proposition 3.1. The special case when f = h and g = k and f, g are real-valued
solutions on J for some real λ follows from [20]. The general case then follows from this special
case and Theorem 4.1.

To prepare for the proofs of Lemma 3.1 and Theorems 3.1, 3.2 we show that the SLP (3.1), (3.8)
can be represented as a boundary value problem for a regular system.

Theorem 4.2. Let (3.2), (3.3) hold, let r ∈ R and let u, v be real-valued linearly independent
solutions of (3.1) with λ = r, normalized to make their Wronskian [v, u] = 1. Let

(4.5) U =
[

v u
pv′ pu′

]
, G = U−1WU =

[
−v uw −u2w
v2w v uw

]
.

For λ ∈ C, consider the first order system

(4.6) Z ′ = (r − λ)GZ on J.

Then
(1) The system (4.6) is regular (and consequently Z(a, λ) and Z(b, λ) exist).
(2) For each λ ∈ C, Z(t, λ) is a (vector or matrix) solution of (4.6) if and only if

(4.7) Y (t, λ) = U(t)Z(t, λ), a < t < b,

is a (vector or matrix) solution of (2.6).

(3) Let (4.7) hold with Y =
(

y
py′

)
, Z =

(
z1

z2

)
. Then y is a solution of (3.1) which satisfies

the (singular) boundary condition (3.8) if and only if Z satisfies (4.6) and the regular BC

(4.8) Ar Z(a) +Br Z(b) = 0,
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where
(4.9)

Ar = −AC(a), C(a) =
(

[f, v](a) [f, u](a)
[g, v](a) [g, u](a)

)
, Br = −BD(b), D(b) =

(
[h, v](b) [h, u](b)
[k, v](b) [k, u](b)

)
.

Proof. A direct computation establishes (1). The Schwartz inequality and the hypothesis (3.3)
imply that each component of G is in L1(J), proving (2). Hence the BC (4.8) is well-defined. To

prove part (3), let Z =
(
z1

z2

)
be a vector solution of (4.6), apply Cramer’s rule to (4.7) to get

(4.10) z1(t, λ) = [y, u](t, λ), z2(t, λ) = −[y, v](t), a ≤ t ≤ b.

The equivalence of (3.8) with (4.8) then follows from Lemma 4.1, and (4.9). �

Proof of Lemma 3.1. From Lemma 4.1 we get, for any y ∈ Dmax, and, in particular, for any
solution y of (3.1) for any λ ∈ C

(4.11)
(

[y, f ](a, λ)
[y, g](a, λ)

)
=
(

[f, v](a) [f, u](a)
[g, v](a) [g, u](a)

)(
[y, u](a, λ)
[y, v](a, λ)

)
= C(a)

(
[y, u](a, λ)
[y, v](a, λ)

)
,

and detC(a) = 1. Note that f, g, u, v and hence C(a) do not depend on λ. From the theory of
regular systems it follows that for any c, d ∈ C, z1(a, λ) = c, z2(a, λ) = d determines a unique

solution Z =
(
z1

z2

)
of (4.6) on (a, b) for any λ ∈ C and z1(b, λ), z2(b, λ) are entire functions

of λ. Hence from (4.10) we may conclude that for any c, d ∈ C, the ‘singular initial condition’

[y, u](a, λ) = c, [y, v](a, λ) = d determines a unique solution Y =
(

y
py′

)
on (a, b) for any λ ∈ C

and [y, u](b, λ), [y, v](b, λ) are entire functions of λ. It follows from (4.11) that the same result holds
for [y, f ](a, λ) = c, [y, g](a, λ). There is a similar argument for ‘initial conditions’ at the endpoint
b. This concludes the proof of Lemma 3.1.

Proof of Theorem 3.1.The existence of solutions ψ1, ψ2 determined by the singular ‘initial
conditions’ (3.10) and the entire dependence of ∆ on λ follows from Lemma 3.1. Let y = cψ1 +dψ2

and consider

A

(
[y, f ](a, λ)
[y, g](a.λ)

)
+B

(
[y, h](b, λ)
[y, k](b, λ)

)
= A

(
[cψ1 + dψ2, f ](a, λ)
[cψ1 + dψ2, g](a, λ)

)
+B

(
[cψ1 + dψ2, h](b, λ)
[cψ1 + dψ2, k](b, λ)

)
=

(
A

(
[ψ1, f ](a, λ), [ψ2, f ](a, λ)
[ψ1, g](a, λ), [ψ2, g](a, λ)

)
+B

(
[ψ1, f ](b, λ), [ψ2, f ](b, λ)
[ψ1, g](b, λ), [ψ2, g](b, λ)

))(
c
d

)
=

(
A+B

(
[ψ1, f ](b, λ), [ψ2, f ](b, λ)
[ψ1, g](b, λ), [ψ2, g](b, λ)

))(
c
d

)
=
(

0
0

)
.

This algebraic system has a nontrivial solution for c, d if and only if ∆(λ) = 0.
The proof of Theorem 3.2 is based on a representation of the characteristic matrix ∆(λ) of the

singular problem (3.1), (3.8) in terms of a characteristic function of the regular system (4.6), (4.8).

Remark 4.1. Note that the system (4.6) does not reduce to a scalar Sturm-Liouville equation
(3.1) because the coefficient matrix G does not have the same form as P in (2.6). In particular g11

and g22 are not the zero function. Nevertheless, it follows from Theorem 4.2 that regular boundary
value problems for the system (4.6) are equivalent to singular problems for the scalar Sturm-Liouville
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equation (3.1). Equivalent in the sense that they have the same eigenvalues and their eigenfunctions
are related as shown by Theorem 4.2.

Definition 4.1. Let the hypotheses and notation of Theorem 4.2 hold. For each λ ∈ C, and every
s, a ≤ s ≤ b, let Φr(t, s, λ) be the fundamental matrix solution of (4.6) determined by the initial
condition

(4.12) Φr(s, s, λ) = I.

Thus, Φr(t, s, λ) is defined for all t, a ≤ t, s ≤ b. For any A,B ∈ M2(C), let Ar, Br be given by
(4.9) and define

(4.13) ∆r(λ) = ∆r(λ,Ar, Br) = det[Ar +Br Φr(b, a, λ)], λ ∈ C.

This function ∆r(λ) is called a characteristic function of the system boundary value problem
(4.6), (4.8); we write ∆r(λ,Ar, Br) to indicate the dependence of ∆ on A,B and r.

Remark 4.2. The function ∆r(λ) given by (4.13) is not to be confused with ∆(λ) given by (3.11).
The relationships between these functions will be established below.

Lemma 4.2. Let the hypotheses and notation of Theorem 4.2 hold and let ∆r(λ) be defined by
(4.13). Then

(1) ∆r(λ) is an entire function of λ.
(2) λ is an eigenvalue of the regular boundary value problem (4.6), (4.8) if and only if ∆r(λ) = 0.

Proof. Part (1) follows from the well known theory of regular boundary value problems and (2)
follows from a direct computation. �

Theorem 4.3. Let the notation and hypotheses of Theorems 3.1 and 4.2 hold; let matrices A,B ∈
M2(C) satisfy (2.3), (2.4), and let Ar, Br given by (4.9). Let ∆(λ) = ∆(λ,A,B) be given by (3.11),
and let ∆r(λ) = ∆r(λ,Ar, Br) be given by (4.13).. Then Ar, Br satisfy (2.3), (2.4) and

(4.14) ∆(λ,A,B) = −∆r(λ,Ar, Br).

Proof.

∆(λ) = det
(
A+B

(
[ψ1, h] [ψ2, h]
[ψ1, k] [ψ2, k]

)
(b, λ)

)
= det

(
A

(
[ψ1, f ] [ψ2, f ]
[ψ1, g] [ψ2, g]

)
(a, λ) +B

(
[ψ1, h] [ψ2, h]
[ψ1, k] [ψ2, k]

)
(b, λ)

)
= det

(
A

(
[f, v] [f, u]
[g, v] [g, u]

)
(a)
(

[ψ1, u] [ψ2, u]
[ψ1, v] [ψ2, v]

)
(a, λ)

+B
(

[h, v] [h, u]
[k, v] [k, u]

)
(b)
(

[ψ1, u] [ψ2, u]
[ψ1, v] [ψ2, v]

)
(b, λ)

)

= det
(
AC(a)

(
[ψ1, u] [ψ2, u]
[ψ1, v] [ψ2, v]

)
(a, λ) +BC(b)

(
[ψ1, u] [ψ2, u]
[ψ1, v] [ψ2, v]

)
(b, λ).

)
(4.15)

Let

D =
(

[ψ1, u] [ψ2, u]
[ψ1, v] [ψ2, v]

)
(a, λ)
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and let Z be the solution of (4.6) determined by the initial condition Z(a, λ) = D and note that
Z(t, λ) = Φ(t, a, λ)D , a ≤ t ≤ b. Hence we get from (4.15) and (4.11)

∆(λ,A,B) = −det(ArΦr(a, a, λ)D +B rΦr(b, a, λ)D) = −det(Ar Φr(a, a, λ) +B r Φr(b, a, λ) )
= −∆r(λ,Ar, Br).

In the penultimate step we used detD = 1 which follows from Lemma 4.1.
It remains to show that Ar, Br satisfy (2.3), (2.4). From Lemma 4.1 it follows that detC(a) =

1 = detC(b) and that
C(a)EC∗(a) = E = C(b)EC∗(b)

Hence the self-adjointness properties (2.3), (2.4) are preserved i.e. rank(A|B) = rank(Ar|Br) and
ArEA

∗
r = BrEB

∗
r . This completes the proof of Theorem 4.3. �

Remark 4.3. We comment on the remarkable identity (4.14). Note that the left hand side is
independent of r and of the fundamental matrix U associated with r. But the matrices Ar, Br depend
on U and hence on r as we have indicated with the notation. Thus as r is changed the identity (4.14)
holds provided the matrices Ar, Br are chosen according to (4.11). The self-adjointness conditions
(2.3), (2.4) are preserved.

We can now proceed with the proof of Theorem 3.2 which is based on the representation (4.14).

Lemma 4.3. Let the notation and hypotheses of Theorem 4.2 hold and let A,B ∈ M2(C) satisfy
(2.3), (2.4). The algebraic multiplicity of any eigenvalue of (4.6), (4.8) is greater than or equal to
its geometric multiplicity.

Proof. Assume ρ is an eigenvalue of (4.6), (4.8) on (a, b). If the geometric multiplicity of ρ is one
then its algebraic multiplicity is at least one since it is a root of the characteristic equation. Suppose
ρ has geometric multiplicity two. Then by the proof of Theorem 4.1 of [18] the boundary condition
(4.8) is equivalent to

(4.16) Ar = Φ(b, a, λ), Br = −I.
For a < c < d < b, let

(4.17) A(c) = Φ(d, c, ρ) , B(d) = −I,
and consider the BC

(4.18) A(c)Y (c) +B(d)Y (d) = 0 on (c, d).

Note that

(4.19) Φ(t, c, ρ) = Φ(t, a, ρ) Φ−1(c, a, ρ) c ≤ t ≤ d
is the fundamental matrix of (4.6) determined by the initial condition Φ(c, c, ρ) = I. Hence the
characteristic function of (4.6), (4.18) on (c, d) is given by

(4.20) δ(λ) = δ(λ, (c, d), A(c), B(d)) = det[A(c)− Φ(d, c, λ)],

and ρ is a geometrically double eigenvalue of this problem on (c, d). But on (c, d) this problem is
equivalent to a regular SLP and hence by Theorem 2.1 the algebraic multiplicity of ρ is also two.
Therefore δ(ρ) = δ

′
(ρ) = 0. From the continuity of Φ(t, s, λ) it follows that as c → a, d → b we

have

(4.21) δ(λ, (c, d), A(c), B(d))→ ∆r(λ, (a, b), Ar, Br).

Consequently ∆r(ρ) = ∆
′
r(ρ) = 0 and we may conclude that the algebraic multiplicity of ρ as an

eigenvalue of the regular system (4.6), (4.8) on (a, b) is at least two. �
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Remark 4.4. It is interesting to note that the proof of Lemma 4.3 shows that if ρ is an eigenvalue
of geometric multiplicity two for the system (4.6), (4.8) satisfying the self-adjointness conditions
(2.3), (2.4) on the interval (a, b), then ρ is also an eigenvalue of geometric and algebraic multiplicity
two on all truncated intervals (c, d) provided the boundary condition on (c, d) is given by (4.17),
(4.18).

Proof of Theorem 3.2. By Lemma 4.3 it suffices to prove that if the algebraic multiplicity of
an eigenvalue is at least two, then its geometric multiplicity is two. Assume that ρ is an eigenvalue
of (4.6), (4.8) on (a, b) with algebraic multiplicity two. By the “Continuation Principle” [18] all
nearby problems have two eigenvalues, counting multiplicity. In particular, for a < c < d < b and c
sufficiently close to a, d sufficiently close to b the “inherited problem” consisting of (4.8) with the
boundary condition

(4.22) ArZ(c) +BrZ(d) = 0 on (c, d),

has two (not necessarily distinct) eigenvalues, counting multiplicity, say ρ1(c, d), ρ2(c, d) such that

(4.23) ρj(c, d)→ ρ, j = 1, 2; as c→ a, d→ b.

On (c, d) each problem (4.6), (4.22) is equivalent to a self-adjoint regular SLP. Let y1 = y1(c, d),
y2 = y2(c, d) be eigenfunctions with eigenvalues ρ1(c, d), ρ2(c, d) of this regular problem satisfying
(4.23). These eigenvalues may or may not be distinct. By the well known Sturm-Liouville theory
for regular problems, if they are distinct then their eigenfunctions are orthogonal; if they are not
distinct their eigenfunctions can be chosen to be orthogonal. Thus, in either case, we have

(4.24)
∫ d

c
y1 y2w = 0.

We normalize these eigenfunctions by choosing a fixed h, a < c < h < d < b, letting Yj =
[
yj
py′j

]
,

Zj = U−1Yj and requiring that

(4.25) ||Zj(h, (c, d))||2 = 1, j = 1, 2.

Note that this normalization is with respect to the Euclidean 2− norm, and yj , Yj , Zj depend on
the interval (c, d) but we sometimes omit this interval in the notation for simplicity. There exist
sequences cn, dn and vectors Kj such that

(4.26) cn → a, dn → b, Zj(h, (cn, dn))→ Kj , and ||Kj ||2 = 1, j = 1, 2.

Let Z1, Z2 be solutions of (4.6) determined by the initial condition

(4.27) Z∗j (h) = Kj , j = 1, 2.

Each Zj can be extended to [a, b] as a solution of (4.6) and as a consequence of the continuous
dependence of solutions of regular systems on initial conditions, it follows that

(4.28) Zj(cn,dn)→ Z∗j on [a, b],

and this convergence is uniform. Here we use the notation [a, b] even when a or b may be infinite
and at a finite or infinite endpoint the solutions are defined as a limit. For a proof of the uniform
convergence of (4.28) on bounded or unbounded intervals, see [24] Theorem 2.12. It follows that
Z∗j , j = 1, 2 satisfies the boundary condition (4.8). It remains to show that Z∗1 , Z

∗
2 are linearly

independent. Let y∗1, y
∗
2 be eigenfunctions satisfying (4.9) and let

(4.29) Y ∗j =
[

y∗j
py∗

′
j

]
, Y ∗j = UZ∗j , j = 1, 2, Z∗1 =

[
z∗11

z∗21

]
, Z∗2 =

[
z∗12

z∗22

]
.
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From (4.24), (4.29) we have

(4.30)
∫ dn

cn

[v z11 + u z21][v z12 + u z22]w = 0.

From (4.30), the uniform convergence of (4.28) on [a, b] and the fact that u, v ∈ L2(J,w) we conclude
that

(4.31)
∫ b

a
y∗1 y

∗
2 w =

∫ b

a
[v z∗11 + u z∗21][v z∗12 + u z∗22]w = 0.

Therefore y∗1, y
∗
2 and consequently Z∗1 , Z

∗
2 are linearly independent. The algebraic multiplicity of

any eigenvalue cannot be greater than two since this would imply, by a similar argument, that its
geometric multiplicity is greater than two which is impossible. This completes the proof of Theorem
3.2.

5. Canonical Boundary Conditions

Next we give a canonical form of the coupled LC boundary conditions; this is then used to define
an alternate version of the characteristic function. This alternate version has been used in [3] and
parallels the version used in Floquet theory in the regular case.

Just as in the regular case the singular self-adjoint boundary conditions (3.8) fall into two disjoint
classes: the separated conditions and the coupled ones. And there is a canonical representation for
each of these classes analogous to the regular case. The separated conditions

A1[y, f ](a) +A2[y, g](a) = 0, A1, A2 ∈ R, (A1, A2) 6= (0, 0);
B1[y, h](b) +B2[y, k](b) = 0, B1, B2 ∈ R, (B1, B2) 6= (0, 0).(5.1)

have the canonical representation

cos(α)[y, f ](a)− sin(α)[y, g](a) = 0, 0 ≤ α < π;
cos(β)[y, h](b)− sin(β)[y, k](b) = 0, 0 < β ≤ π.(5.2)

And the canonical representation of the coupled BC is given by:

(5.3)
(

[y, h](b)
[y, k](b)

)
= eiγK

(
[y, f ](a)
[y, g](a)

)
, −π < γ ≤ π, K = (kij), kij ∈ R,detK = 1.

As in the regular case, it follows directly from these representations of the BC that S is a real
self-adjoint extension of the minimal operator Smin if and only if it is determined by either the
separated BC or the coupled BC with γ = 0. (Note that γ = π corresponds to replacing K by −K.)

How does the representation of the coupled BC change when the BC basis f, g at a changes ?

Lemma 5.1. Let {f, g} be a BC basis at a and {h, k} a BC basis at b. If f1, g1 is another boundary
condition basis at a, then (5.3) is equivalent with

(5.4)
(

[y, h](b)
[y, k](b)

)
= eiγK

(
−[f, g1](a) [f, f1](a)
−[g, g1](a) [g, f1](a)

)(
[y, f1](a)
[y, g1](a)

)
.

There is a similar result when the BC basis at b changes.

Proof. This follows directly from Lemma 4.1. Let

(5.5) C =
(
−[f, g1](a) [f, f1](a)
−[g, g1](a) [g, f1](a)

)
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and note that Lemma 4.1 and the normalization of f, g imply detC = 1 so that for K1 = KC we
have detK1 = 1 consistent with (5.3). �

Theorem 5.1. Let the notation and the hypotheses of Theorem 4.2 hold. Assume that B = −I
and A = eiγK, −π < γ ≤ π, K ∈ SL(2,R). Let K = (kij) and for each λ ∈ C, let Φ(t, s, λ) be the
fundamental matrix solution of (4.6) determined by the initial condition Φ(s, s, λ) = I, a ≤ s ≤ b.

Define

(5.6) D(λ,K) = k11φ22(b, a, λ) + k22φ11(b, a, λ)− k12φ21(b, a, λ)− k21φ12(b, a, λ).

Then λ is an eigenvalue of (3.1) with boundary condition

(5.7)
(

[y, u](b)
[y, v](b)

)
= eiγK

(
[y, u](a)
[y, v](a)

)
,

if and only if

(5.8) D(λ,K) = 2 cos(γ).

Proof. Note that det Φ(b, a, λ) = 1 by Abel’s Theorem since trace(G) = 0. Expanding (5.4) and
letting Φ = (φij) we get

∆(λ) = det[eiγK − Φ(b, a, λ)]

=
∣∣∣∣ eiγk11 − φ11 eiγk12 − φ12

eiγk21 − φ21 eiγk22 − φ22

∣∣∣∣ (b, a, λ)

= [(eiγk11 − φ11)(eiγk22 − φ22)− (eiγk12 − φ12)(eiγk21 − φ21)](b, a, λ)

= [e2iγ [k11k22 − k12k21]− eiγ [k11φ22 + k22φ11 − k12φ21 − k21φ12] + φ11φ22 − φ12φ21](b, a, λ)

= e2iγ − eiγD(λ,K) + 1.

Now dividing by eiγ we get
e−iγ∆(λ) = eiγ + e−iγ −D(λ,K).

Hence ∆(λ) = 0 if and only if D(λ,K) = eiγ + e−iγ = 2 cos(γ). �

Remark 5.1. The characterization of the eigenvalues for coupled BC given by (5.8) was proved in
Bailey, Everitt and Zettl [3] for the case when p > 0 and used by Everitt and Nasri-Roudsari [12] to
define the algebraic multiplicity. These authors did not consider the equivalence between the alge-
braic and geometric multiplicities. Theorem 5.1 shows that our definition of algebraic multiplicity
is equivalent with the one given in [3].

Acknowledgment. This work is supported in part by the National Science Foundation through
the grant DMS-9973108.

References

[1] P. B. Bailey and W. N. Everitt and A. Zettl, Fortran code available from www.math.niu.edu/˜zettl/SL2
[2] P. B. Bailey and W. N. Everitt and A. Zettl, “The SLEIGN2 Sturm-Liouville code”, ACM Transactions of Math.

Software 21 (2001), 143-192.
[3] P. B. Bailey and W. N. Everitt and A. Zettl, “Regular and singular Sturm-Liouville problems with coupled

boundary conditions”, Proceedings of the Roy. Soc. Edinburgh, 126A, (1996), 505-514.
[4] P. B. Bailey and W. N. Everitt and J. Weidmann and A. Zettl, “Regular approximations of singular Sturm-

Liouville problems”, Results in Mathematics, 23(1993), 3-22.
[5] P. Binding and H. Volkmer, “Oscillation theory for Sturm-Liouville problems with indefinite coefficients”, Proc.

Roy. Soc. Edinburgh Sect. A, 131(2001), 989–1002.



16 Q. KONG, H. WU, AND A. ZETTL

[6] X. Cao, Q. Kong, H. Wu, and A. Zettl, “Sturm-Liouville problems whose leading coefficient function changes
sign”, Canadian J. Math, to appear.

[7] M.S.P. Eastham, “The Spectral Theory of Periodic Differential Equations”, Scottish Academic Press, Edinburgh,
(1973).

[8] M. S. P. Eastham, Q. Kong, H. Wu and A. Zettl, “Inequalities among eigenvalues of Sturm-Liouville problems”,
J. Inequalities and Appl., 3(1999), 25-43.

[9] W. N. Everitt, M. Marletta and A. Zettl, “Inequalities and Eigenvalues of Sturm-Liouville Problems Near a
Singular Boundary”, J. Inequalities and Appl., 6(2001), 405-413.
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[11] W. N. Everitt, M. Möller and A. Zettl, “Sturm-Liouville problems and discontinuous eigenvalues”, Proc. Roy.
Soc. Edinburgh Sect A, 129(1999), 707-716.

[12] W. N. Everitt and G. Nasri-Roudsari, “Sturm-Liouville problems with coupled boundary conditions and Lagrange
interpolation series: II”, Rendiconti di Matematica, Serie VII. 20 (2000), 199-236.

[13] W. N. Everitt and D. Race, “On necessary and sufficient conditions for the existence of Caratheodory type
solutions of ordinary differential equations,” Questiones Mathematicae 2 (1978), 507-512.

[14] C. T. Fulton, “Parametrizations of Titchmarsh’s m(λ) function in the limit circle case”, Trans. Amer. Math.
Soc. 229, (1977), 51-63.

[15] Q. Kong, H. Wu and A. Zettl, “Dependence of eigenvalues on the problem”, Math. Nachr., 188(1997), 173-201.
[16] Q. Kong, H. Wu and A. Zettl, “Dependence of the n-th Sturm-Liouville eigenvalue on the problem”, J. Differential

Equations, 156(1999), 328-354.
[17] Q. Kong, H. Wu and A. Zettl, “Inequalities among eigenvalues of singular Sturm-Liouville problems”, Dynamic

Systems and Applications, 8(1999), 517-531.
[18] Q. Kong, H. Wu and A. Zettl, “Geometric aspects of Sturm-Liouville problems, I. Structure on spaces of boundary

conditions”, Proc. Roy. Soc. Edinburgh Sect A, 130(2000), 561-589.
[19] L. Kong, Q. Kong, H. Wu and A. Zettl, “Regular approximations of singular Sturm-Liouville problems with

limit-circle endpoints”, preprint.
[20] A.M. Krall and A. Zettl, “Singular self-adjoint Sturm-Liouville problems”, Differential and Integral Equ. 1

(1988), 423-432.
[21] L. L. Littlejohn and A. M. Krall, “Orthogonal polynomials and singular Sturm-Liouville systems”, Rocky Moun-

tain J. Math. 16, (1986), 435-479.
[22] M.A. Naimark, “Linear Differential Operators: II ”, Ungar, New York, 1968.
[23] J. Weidman, “Spectral theory of ordinary differential operators”, Lecture Notes in Mathematics 1258, Springer

Verlag, Berlin, (1987).
[24] A. Zettl, “Sturm-Liouville problems, in Spectral Theory and Computational Methods of Sturm-Liouville prob-

lems”, ed. D. Hinton and P. W. Schaefer, Lecture notes in Pure and Applied Math. 191(1997), Dekker.

Mathematics Dept. NIU

E-mail address: kong@math.niu.edu

E-mail address: wu@math.niu.edu

E-mail address: zettl@math.niu.edu


