Pythagorean Theorem – Euclid’s Proof

Given a right triangle \(\triangle ABC \). Construct a point \(D \) on the line \(\overrightarrow{BC} \) such that \(m(\angle CAD) = m(\angle B) \), as shown in the following diagram.

The following three right triangles are similar:
\[\triangle ABC \sim \triangle DAC \sim \triangle DBA. \]

It follows that
\[\frac{a}{c} = \frac{c}{a + d} \]

So
\[a^2 + ad = c^2 \]

Also
\[\frac{a}{b} = \frac{d}{b} \]

So
\[ad = b^2 \]

Thus
\[a^2 + b^2 = c^2. \]