Primitive Roots

Let p denote a prime number. As mentioned before, the group of invertible elements in $\mathbb{Z}/p\mathbb{Z}$ (which we'll denote by $(\mathbb{Z}/p\mathbb{Z})^\times$) is an abelian group of order $p - 1$. In other words, $(\mathbb{Z}/p\mathbb{Z})^\times = \{1, \ldots, [p - 1]_p\}$ is an abelian group via multiplication in $\mathbb{Z}/p\mathbb{Z}$. We want to show that this is a cyclic group. In other words, we want to show that there is an $[a]_p$ of order $p - 1$.

Lemma 1: Suppose G is an abelian group and suppose that a and b are elements of G of finite order. If the greatest common divisor of $o(a)$ and $o(b)$ is 1, then $o(ab) = o(a)o(b)$.

Proof: For notational convenience, let's write $m = o(a)$ and $n = o(b)$. Consider the two cyclic subgroups $\langle a \rangle$ and $\langle b \rangle$ of G. The intersection of these two subgroups, call it H, is a subgroup of both $\langle a \rangle$ and $\langle b \rangle$. By Lagrange's Theorem, the order of H must divide both m and n. Since m and n are relatively prime, we conclude that the order of H is 1. In other words, if $a^j = b^k$ for some $j, k \in \mathbb{Z}$, then $a^j = b^k = e$ since $a^j, b^k \in H = \{e\}$.

Since G is abelian, $(ab)^j = a^j b^j$ for any integer j. Suppose $(ab)^j = e$. Then $a^j b^j = e$, so that $a^j = (b^j)^{-1} = b^{-j}$. Thus, $a^j = b^{-j} = e$. But this implies that j is a multiple of m and n, and since m and n are relatively prime, this means that j must be a multiple of mn. Thus, the order of ab is a multiple of mn. On the other hand, $(ab)^{mn} = (a^n)^m(b^m)^n = e^m e^n = e$, so the order of ab is exactly mn.

Lemma 2: Suppose G is a finite abelian group and choose an element $a \in G$ of largest order. Then $b^{o(a)} = e$ for all elements $b \in G$.

Proof: For notational convenience, write $n = o(a)$. Suppose to the contrary that there is an element b where $b^n \neq e$. Write $m = o(b)$. Then $m \nmid n$. Via the Fundamental Theorem of Arithmetic, there must be a prime power p^i which divides m but doesn’t divide n. Write $n = p^i k$ and $m = p^i l$, where p doesn’t divide k or l. Since we said p^i doesn’t divide n, i must be less that j.

Now a^{p^i} has order k and b^j has order p^j. Since $p \nmid k$, by Lemma 1 the element $a^{p^i}b^j$ has order $p^j k$. But $j > i$, which implies that $p^j k$ is greater than $p^i k$, which was supposedly the largest order of any element of G. This contradiction shows that there was no element b with $b^n \neq e$.

Theorem: For any prime number \(p \), the finite abelian group \((\mathbb{Z}/p\mathbb{Z})^\times \) is cyclic.

Proof: Denote the largest order of the elements of \((\mathbb{Z}/p\mathbb{Z})^\times \) by \(n \). Since \([a]_p^{p-1} = [1]_p\) by Fermat’s little Theorem (Lagrange’s Theorem, if you prefer) for all \([a]_p \in (\mathbb{Z}/p\mathbb{Z})^\times\), we must have \(n \leq p - 1 \). We want to show that \(n = p - 1 \).

By Lemma 2, \([a]^n = [1]_p\) for all \([a]_p \in (\mathbb{Z}/p\mathbb{Z})^\times\). In other words, every element of \((\mathbb{Z}/p\mathbb{Z})^\times \) is a root of the polynomial \(X^n - [1]_p \), a polynomial with coefficients in \(\mathbb{Z}/p\mathbb{Z} \). This is a polynomial of degree \(n \) with \(p - 1 \) roots in \(\mathbb{Z}/p\mathbb{Z} \), so \(n \geq p - 1 \).

This shows that \(n = p - 1 \). In particular, there is an element of order \(p - 1 \), so that \((\mathbb{Z}/p\mathbb{Z})^\times \) is cyclic.

An element of \((\mathbb{Z}/p\mathbb{Z})^\times \) of order \(p - 1 \), i.e., a generator of the cyclic group, is called a primitive root mod \(p \).