Our goal is to prove the following theorem due to Hardy.

Theorem 1 (Hardy)

There are infinitely many zeros ρ of $\zeta(s)$ with $\Re(s) = 1/2$.

The proof will require some preparatory steps, the first of which is itself a named theorem.

Theorem 2 (Mellin)

For all $z \in \mathbb{C}$ with $\Re(z) > 0$ and all $\sigma_0 > 0$,

$$\frac{1}{2\pi i} \int_{\sigma_0 - i \infty}^{\sigma_0 + i \infty} \Gamma(s) z^{-s} ds = e^{-z}.$$
Our goal is to prove the following theorem due to Hardy.
Our goal is to prove the following theorem due to Hardy.

Theorem 1 (Hardy)

There are infinitely many zeros ρ of $\zeta(s)$ with $\Re(s) = 1/2.
Hardy’s Theorem Part I: Mellin’s Theorem

Our goal is to prove the following theorem due to Hardy.

Theorem 1 (Hardy)

There are infinitely many zeros ρ of $\zeta(s)$ with $\Re(s) = 1/2$.

The proof will require some preparatory steps, the first of which is itself a named theorem.
Our goal is to prove the following theorem due to Hardy.

Theorem 1 (Hardy)

There are infinitely many zeros ρ of $\zeta(s)$ with $\Re(s) = 1/2$.

The proof will require some preparatory steps, the first of which is itself a named theorem.

Theorem 2 (Mellin)

For all $z \in \mathbb{C}$ with $\Re(z) > 0$ and all $\sigma_0 > 0$,
Our goal is to prove the following theorem due to Hardy.

Theorem 1 (Hardy)

There are infinitely many zeros \(\rho \) of \(\zeta(s) \) with \(\Re(s) = 1/2 \).

The proof will require some preparatory steps, the first of which is itself a named theorem.

Theorem 2 (Mellin)

For all \(z \in \mathbb{C} \) with \(\Re(z) > 0 \) and all \(\sigma_0 > 0 \),

\[
\frac{1}{2\pi i} \int_{\sigma_0 - i\infty}^{\sigma_0 + i\infty} \Gamma(s)z^{-s} \, ds = e^{-z}.
\]
Our proof of Mellin’s Theorem requires a few technical estimates.

Lemma 3
Suppose $\Re(z)$ and σ_0 are both positive. Then
$$\lim_{k \to \infty} \int_{\sigma_0 - k} \left| \Gamma(\sigma \pm ik) z - (\sigma \pm ik) \right| d\sigma = 0.$$

Proof:
Via Stirling's formula $|\Gamma(s)| \ll |s| s - 1/2 e^{-s}$. Temporarily set $\delta = \pi/2 + |\text{Arg}(z)|^2$. Note that $\delta < \pi/2$ since $\Re(z) > 0$. A bit of computation shows that for k sufficiently large in terms of σ_0 and $|\text{Arg}(z)|$ we get
$$|\Gamma(\sigma \pm ik)| \leq k \sigma \exp(-k \delta).$$
Also, $|z - (\sigma \pm ik)| = |z| - \sigma \exp(\mp k \text{Arg}(z))$.

Our proof of Mellin’s Theorem requires a few technical estimates.

Lemma 3

Suppose $\Re(z)$ and σ_0 are both positive.
Our proof of Mellin’s Theorem requires a few technical estimates.

Lemma 3

Suppose $\Re(z)$ and σ_0 are both positive. Then

$$\lim_{k \to \infty} \int_{-k}^{\sigma_0} |\Gamma(\sigma \pm ik)z^{-(\sigma \pm ik)}| \, d\sigma = 0.$$
Our proof of Mellin’s Theorem requires a few technical estimates.

Lemma 3

Suppose \(\Re(z) \) and \(\sigma_0 \) are both positive. Then

\[
\lim_{k \to \infty} \int_{-k}^{\sigma_0} |\Gamma(\sigma \pm ik)z^{-(\sigma \pm ik)}| \, d\sigma = 0.
\]

Proof:
Our proof of Mellin’s Theorem requires a few technical estimates.

Lemma 3

Suppose $\Re(z)$ and σ_0 are both positive. Then

$$\lim_{k \to \infty} \int_{-k}^{\sigma_0} |\Gamma(\sigma \pm ik)z^{-(\sigma \pm ik)}| \, d\sigma = 0.$$

Proof: Via Stirling’s formula $|\Gamma(s)| \ll |s^{s-1/2}e^{-s}|.$
Our proof of Mellin’s Theorem requires a few technical estimates.

Lemma 3

Suppose \(\Re(z) \) and \(\sigma_0 \) are both positive. Then

\[
\lim_{k \to \infty} \int_{-k}^{\sigma_0} |\Gamma(\sigma \pm ik)z^{-(\sigma \pm ik)}| d\sigma = 0.
\]

Proof: Via Stirling’s formula \(|\Gamma(s)| \ll |s^{s-1/2}e^{-s}|\). Temporarily set

\[
\delta = \frac{\pi/2 + |\text{Arg}(z)|}{2}.
\]
Our proof of Mellin’s Theorem requires a few technical estimates.

Lemma 3

Suppose $\Re(z)$ and σ_0 are both positive. Then

$$\lim_{k \to \infty} \int_{-k}^{\sigma_0} |\Gamma(\sigma \pm ik)z^{-(\sigma \pm ik)}| \, d\sigma = 0.$$

Proof: Via Stirling’s formula $|\Gamma(s)| \ll |s^{s-1/2}e^{-s}|$. Temporarily set $\delta = \frac{\pi/2 + |\text{Arg}(z)|}{2}$. Note that $\delta < \pi/2$ since $\Re(z) > 0$.
Our proof of Mellin’s Theorem requires a few technical estimates.

Lemma 3

Suppose $\Re(z)$ and σ_0 are both positive. Then

$$\lim_{k \to \infty} \int_{-k}^{\sigma_0} \left| \Gamma(\sigma \pm ik) z^{-(\sigma \pm ik)} \right| d\sigma = 0.$$

Proof: Via Stirling’s formula $|\Gamma(s)| \ll |s^{s-1/2} e^{-s}|$. Temporarily set $\delta = \frac{\pi/2 + |\text{Arg}(z)|}{2}$. Note that $\delta < \pi/2$ since $\Re(z) > 0$. A bit of computation shows that for k sufficiently large in terms of σ_0 and $|\text{Arg}(z)|$ we get
Our proof of Mellin’s Theorem requires a few technical estimates.

Lemma 3

Suppose $\Re(z)$ and σ_0 are both positive. Then

$$\lim_{k \to \infty} \int_{-k}^{\sigma_0} |\Gamma(\sigma \pm ik)z^{-(\sigma \pm ik)}| \, d\sigma = 0.$$

Proof: Via Stirling’s formula $|\Gamma(s)| \ll |s^{s-1/2}e^{-s}|$. Temporarily set $\delta = \frac{\pi/2 + |\text{Arg}(z)|}{2}$. Note that $\delta < \pi/2$ since $\Re(z) > 0$. A bit of computation shows that for k sufficiently large in terms of σ_0 and $|\text{Arg}(z)|$ we get

$$|\Gamma(\sigma \pm ik)| \leq k^\sigma \exp(-k\delta).$$
Our proof of Mellin’s Theorem requires a few technical estimates.

Lemma 3

Suppose \(\Re(z) \) and \(\sigma_0 \) are both positive. Then

\[
\lim_{k \to \infty} \int_{-k}^{\sigma_0} \left| \Gamma(\sigma \pm ik)z^{-(\sigma \pm ik)} \right| d\sigma = 0.
\]

Proof: Via Stirling’s formula \(|\Gamma(s)| \ll |s^{s-1/2}e^{-s}|\). Temporarily set \(\delta = \frac{\pi/2 + |\text{Arg}(z)|}{2} \). Note that \(\delta < \pi/2 \) since \(\Re(z) > 0 \). A bit of computation shows that for \(k \) sufficiently large in terms of \(\sigma_0 \) and \(|\text{Arg}(z)| \) we get

\[
|\Gamma(\sigma \pm ik)| \leq k^\sigma \exp(-k\delta).
\]

Also,

\[
|z^{-(\sigma \pm ik)}| = |z|^{-\sigma} \exp(\mp k \text{Arg}(z)).
\]
Via these, we see that

\[
\int_0^\infty \left| \Gamma(\sigma \pm ik) z^{-k} \right| d\sigma < z, \sigma_0 k \sigma_0 + 1 \exp \left(-k \left(\frac{\pi}{2} - \delta \right) \right),
\]

where the implicit constant depends only on \(z \) and \(\sigma_0 \).

Since \(\delta < \frac{\pi}{2} \), the lemma follows.

Lemma 4

Suppose \(\Re(z) > 0 \) and for \(n \in \mathbb{Z} \) set \(k = n + \frac{1}{2} \).

Then

\[
\lim_{n \to \infty} \int_{k-\infty}^{k} \left| \Gamma(-k + it) z^{k - it} \right| dt = 0.
\]

Proof:

We use the identity

\[
\Gamma(s) = \frac{\pi}{\sin(\pi s) \Gamma(1-s)},
\]

which holds for all \(s \not\in \mathbb{Z} \) by Exercise #16.
Via these, we see that

\[
\int_{-k}^{\sigma_0} \left| \Gamma(\sigma \pm ik)z^{-(\sigma \pm ik)} \right| \, d\sigma \ll_{z,\sigma_0} k^{\sigma_0+1} \exp \left(- k(\pi/2 - \delta) \right),
\]

where the implicit constant depends only on \(z\) and \(\sigma_0\). Since \(\delta < \pi/2\), the lemma follows.
Via these, we see that

\[
\int_{-k}^{\sigma_0} |\Gamma(\sigma \pm ik)z^{-(\sigma \pm ik)}| \, d\sigma \ll z, \sigma_0 \quad k^{\sigma_0+1} \exp\left(-k\left(\pi/2 - \delta\right)\right),
\]

where the implicit constant depends only on \(z \) and \(\sigma_0 \).
Via these, we see that

\[
\int_{-k}^{\sigma_0} |\Gamma(\sigma \pm ik)z^{-(\sigma \pm ik)}| \, d\sigma \ll_{z,\sigma_0} k^{\sigma_0+1} \exp \left(- k(\pi/2 - \delta) \right),
\]

where the implicit constant depends only on \(z \) and \(\sigma_0 \). Since \(\delta < \pi/2 \), the lemma follows.
Via these, we see that

\[\int_{-k}^{\sigma_0} \left| \Gamma(\sigma \pm ik) z^{-\sigma \pm ik} \right| d\sigma \ll_{z, \sigma_0} k^{\sigma_0+1} \exp \left(-k(\pi/2 - \delta) \right), \]

where the implicit constant depends only on \(z \) and \(\sigma_0 \). Since \(\delta < \pi/2 \), the lemma follows.

Lemma 4

Suppose \(\Re(z) > 0 \) and for \(n \in \mathbb{Z} \) set \(k = n + 1/2 \).
Via these, we see that

\[\int_{-k}^{\sigma_0} \left| \Gamma(\sigma \pm ik)z^{-(\sigma \pm ik)} \right| d\sigma \ll_{z,\sigma_0} k^{\sigma_0+1} \exp \left(-k\left(\pi/2 - \delta\right) \right),\]

where the implicit constant depends only on \(z\) and \(\sigma_0\). Since \(\delta < \pi/2\), the lemma follows.

Lemma 4

Suppose \(\Re(z) > 0\) and for \(n \in \mathbb{Z}\) set \(k = n + 1/2\). Then

\[
\lim_{n \to \infty} \int_{-k}^{k} \left| \Gamma(-k + it)z^{k-it} \right| dt = 0.
\]
Via these, we see that
\[
\int_{-k}^{\sigma_0} |\Gamma(\sigma \pm ik)z^{-(\sigma \pm ik)}| \, d\sigma \ll_{z, \sigma_0} k^{\sigma_0 + 1} \exp \left(-k \left(\frac{\pi}{2} - \delta \right) \right),
\]
where the implicit constant depends only on z and σ_0. Since $\delta < \pi/2$, the lemma follows.

Lemma 4

Suppose $\Re(z) > 0$ and for $n \in \mathbb{Z}$ set $k = n + 1/2$. Then

\[
\lim_{n \to \infty} \int_{-k}^{k} |\Gamma(-k + it)z^{k-it}| \, dt = 0.
\]

Proof:
Via these, we see that

\[\int_{-k}^{\sigma_0} \left| \Gamma(\sigma \pm ik)z^{-\left(\sigma \pm ik\right)} \right| d\sigma \ll_{z, \sigma_0} k^{\sigma_0+1} \exp \left(-k\left(\pi/2 - \delta\right) \right), \]

where the implicit constant depends only on \(z \) and \(\sigma_0 \). Since \(\delta < \pi/2 \), the lemma follows.

Lemma 4

Suppose \(\Re(z) > 0 \) and for \(n \in \mathbb{Z} \) set \(k = n + 1/2 \). Then

\[\lim_{n \to \infty} \int_{-k}^{k} \left| \Gamma(-k + it)z^{k-it} \right| dt = 0. \]

Proof: We use the identity

\[\Gamma(s) = \frac{\pi}{\sin(\pi s)\Gamma(1 - s)}, \]

which holds for all \(s \notin \mathbb{Z} \) by Exercise \#16.
Since $k = n + 1/2$ for some $n \in \mathbb{Z}$ here,
Since $k = n + 1/2$ for some $n \in \mathbb{Z}$ here, $\sin(\pi(-k + it)) \gg 1$ and $-k + it \notin \mathbb{Z}$.
Since $k = n + 1/2$ for some $n \in \mathbb{Z}$ here, $\sin(\pi(-k + it)) \gg 1$ and $-k + it \notin \mathbb{Z}$. Thus

$$|\Gamma(-k + it)| \ll \frac{1}{|\Gamma(k + 1 - it)|}.$$
Since \(k = n + 1/2 \) for some \(n \in \mathbb{Z} \) here, \(\sin (\pi (-k + it)) \gg 1 \) and \(-k + it \notin \mathbb{Z}\). Thus

\[
|\Gamma(-k + it)| \ll \frac{1}{|\Gamma(k + 1 - it)|}.
\]

Exactly as above we have \(|z|^{k-it} = |z|^k \exp (t \text{Arg}(z)) \).
Since \(k = n + 1/2 \) for some \(n \in \mathbb{Z} \) here, \(\sin(\pi(-k + it)) \gg 1 \) and \(-k + it \notin \mathbb{Z}\). Thus

\[
|\Gamma(-k + it)| \ll \frac{1}{|\Gamma(k + 1 - it)|}.
\]

Exactly as above we have \(|z|^{k-it} = |z|^k \exp(t \text{Arg}(z)) \). Estimating with Stirling’s formula, a little bit of work gives
Since $k = n + 1/2$ for some $n \in \mathbb{Z}$ here, $\sin(\pi(-k + it)) \gg 1$ and $-k + it \not\in \mathbb{Z}$. Thus

$$|\Gamma(-k + it)| \ll \frac{1}{|\Gamma(k + 1 - it)|}.$$

Exactly as above we have $|z|^{k-it} = |z|^k \exp(t \text{Arg}(z))$. Estimating with Stirling’s formula, a little bit of work gives

$$\int_{-k}^{k} \left| \Gamma(-k + it) z^{k-it} \right| \, dt$$
Since $k = n + 1/2$ for some $n \in \mathbb{Z}$ here, $\sin \left(\pi (-k + it) \right) \gg 1$ and $-k + it \notin \mathbb{Z}$. Thus

$$|\Gamma(-k + it)| \ll \frac{1}{|\Gamma(k + 1 - it)|}.$$

Exactly as above we have $|z|^{k-it} = |z|^k \exp \left(t \text{Arg}(z) \right)$. Estimating with Stirling’s formula, a little bit of work gives

$$\int_{-k}^{k} \left| \Gamma(-k + it)z^{k-it} \right| dt \ll \int_{-k}^{k} |z|^k e^k k^{-k} \exp \left(t \text{Arg}(z) \right) \exp \left(t \text{Arg}(k + 1 + it) \right) dt$$

for some positive constant C depending only on z. The lemma follows.
Since $k = n + 1/2$ for some $n \in \mathbb{Z}$ here, $\sin(\pi(-k + it)) \gg 1$ and $-k + it \not\in \mathbb{Z}$. Thus

$$|\Gamma(-k + it)| \ll \frac{1}{|\Gamma(k + 1 - it)|}.$$

Exactly as above we have $|z|^{k-it} = |z|^k \exp(t \text{Arg}(z))$. Estimating with Stirling’s formula, a little bit of work gives

$$\int_{-k}^{k} |\Gamma(-k + it)z^{k-it}| \, dt \ll \int_{-k}^{k} |z|^k e^k k^{-k} \exp(t \text{Arg}(z)) \exp(t \text{Arg}(k + 1 + it)) \, dt \ll \left(\frac{e|z|}{k}\right)^k \exp(kC)$$
Since $k = n + 1/2$ for some $n \in \mathbb{Z}$ here, $\sin(\pi(-k + it)) \gg 1$ and $-k + it \not\in \mathbb{Z}$. Thus

$$|\Gamma(-k + it)| \ll \frac{1}{|\Gamma(k + 1 - it)|}.$$

Exactly as above we have $|z|^{k-it} = |z|^k \exp(t \arg(z))$. Estimating with Stirling's formula, a little bit of work gives

$$\int_{-k}^{k} |\Gamma(-k + it)z^{k-it}| \, dt \ll \int_{-k}^{k} |z|^k e^k k^{-k} \exp(t \arg(z)) \exp(t \arg(k + 1 + it)) \, dt \ll \left(\frac{e|z|}{k}\right)^k \exp(kC)$$

for some positive constant C depending only on z.
Since $k = n + 1/2$ for some $n \in \mathbb{Z}$ here, $\sin \left(\pi(-k + it) \right) \gg 1$ and $-k + it \not\in \mathbb{Z}$. Thus

$$|\Gamma(-k + it)| \ll \frac{1}{|\Gamma(k + 1 - it)|}.$$

Exactly as above we have $|z|^{k-it} = |z|^k \exp \left(t \text{ Arg}(z) \right)$. Estimating with Stirling’s formula, a little bit of work gives

$$\int_{-k}^{k} |\Gamma(-k + it)z^{k-it}| \, dt \ll \int_{-k}^{k} |z|^k e^k k^{-k} \exp \left(t \text{ Arg}(z) \right) \exp \left(t \text{ Arg}(k + 1 + it) \right) \, dt \ll \left(\frac{e|z|}{k} \right)^k \exp(kC)$$

for some positive constant C depending only on z. The lemma follows.
Lemma 5

For all integers $n \leq 0$ the residue of $\Gamma(s)$ at $s = n$ is $(-1)^n/(-n)!$.

Proof: Via Exercise #16 once more

\[
\sin(\pi s) = \pi \Gamma(1-s)
\]

Taking the limit as $s \to n$ and using Exercise #14 ($\Gamma(1-n) = (-n)!$ in this case) gives the result.
Lemma 5

For all integers $n \leq 0$ the residue of $\Gamma(s)$ at $s = n$ is $(-1)^n/(-n)!$.

Proof:
Lemma 5

For all integers $n \leq 0$ the residue of $\Gamma(s)$ at $s = n$ is $(-1)^n/(-n)!$.

Proof: Via Exercise #16 once more
Lemma 5

For all integers $n \leq 0$ the residue of $\Gamma(s)$ at $s = n$ is $(-1)^n/(-n)!$.

Proof: Via Exercise #16 once more

$$\frac{\sin(\pi s)}{\pi} \Gamma(s) = \Gamma(1 - s).$$
Lemma 5

For all integers $n \leq 0$ the residue of $\Gamma(s)$ at $s = n$ is $(-1)^n/(-n)!$.

Proof: Via Exercise #16 once more

$$\frac{\sin(\pi s)}{\pi} \Gamma(s) = \Gamma(1 - s).$$

Taking the limit as $s \to n$ and using Exercise #14
Lemma 5

For all integers $n \leq 0$ the residue of $\Gamma(s)$ at $s = n$ is $(-1)^n/(-n)!$.

Proof: Via Exercise #16 once more

$$\frac{\sin(\pi s)}{\pi} \Gamma(s) = \Gamma(1 - s).$$

Taking the limit as $s \rightarrow n$ and using Exercise #14 ($\Gamma(1 - n) = (-n)!$ in this case)
Lemma 5

For all integers \(n \leq 0 \) the residue of \(\Gamma(s) \) at \(s = n \) is \((-1)^n/(-n)!\).

Proof: Via Exercise \#16 once more

\[
\frac{\sin(\pi s)}{\pi} \Gamma(s) = \Gamma(1 - s).
\]

Taking the limit as \(s \to n \) and using Exercise \#14 (\(\Gamma(1 - n) = (-n)! \) in this case) gives the result.
Proof of Mellin’s Theorem:
Proof of Mellin’s Theorem: For any positive rational number of the form $k = n + 1/2$ where $n \in \mathbb{Z},$
Proof of Mellin’s Theorem: For any positive rational number of the form $k = n + 1/2$ where $n \in \mathbb{Z}$, consider the contour integral

$$\frac{1}{2\pi i} \oint_{R_k} \Gamma(s)z^{-s} \, ds$$
Proof of Mellin’s Theorem: For any positive rational number of the form \(k = n + 1/2 \) where \(n \in \mathbb{Z} \), consider the contour integral

\[
\frac{1}{2\pi i} \oint_{R_k} \Gamma(s)z^{-s} \, ds
\]

where \(R_k \) is the rectangle with vertices \(-k \pm ik\) and \(\sigma_0 \pm ik\).
Proof of Mellin’s Theorem: For any positive rational number of the form $k = n + 1/2$ where $n \in \mathbb{Z}$, consider the contour integral

$$
\frac{1}{2\pi i} \oint_{R_k} \Gamma(s)z^{-s} \, ds
$$

where R_k is the rectangle with vertices $-k \pm ik$ and $\sigma_0 \pm ik$. Note that the only poles of the integrand come from poles of the Gamma function,
Proof of Mellin’s Theorem: For any positive rational number of the form $k = n + 1/2$ where $n \in \mathbb{Z}$, consider the contour integral

$$\frac{1}{2\pi i} \int_{R_k} \Gamma(s)z^{-s} \, ds$$

where R_k is the rectangle with vertices $-k \pm ik$ and $\sigma_0 \pm ik$. Note that the only poles of the integrand come from poles of the Gamma function, and we know these are located along the real axis at 0 and the negative integers.
Proof of Mellin’s Theorem: For any positive rational number of the form $k = n + 1/2$ where $n \in \mathbb{Z}$, consider the contour integral

$$\frac{1}{2\pi i} \oint_{R_k} \Gamma(s)z^{-s} \, ds$$

where R_k is the rectangle with vertices $-k \pm ik$ and $\sigma_0 \pm ik$. Note that the only poles of the integrand come from poles of the Gamma function, and we know these are located along the real axis at 0 and the negative integers. In particular, due to our choice of k,
Proof of Mellin’s Theorem: For any positive rational number of the form \(k = n + 1/2 \) where \(n \in \mathbb{Z} \), consider the contour integral

\[
\frac{1}{2\pi i} \oint_{R_k} \Gamma(s)z^{-s} \, ds
\]

where \(R_k \) is the rectangle with vertices \(-k \pm ik\) and \(\sigma_0 \pm ik\). Note that the only poles of the integrand come from poles of the Gamma function, and we know these are located along the real axis at 0 and the negative integers. In particular, due to our choice of \(k \), our contour integral avoids these poles.
Proof of Mellin’s Theorem: For any positive rational number of the form \(k = n + 1/2 \) where \(n \in \mathbb{Z} \), consider the contour integral

\[
\frac{1}{2\pi i} \oint_{R_k} \Gamma(s)z^{-s} \, ds
\]

where \(R_k \) is the rectangle with vertices \(-k \pm ik\) and \(\sigma_0 \pm ik\). Note that the only poles of the integrand come from poles of the Gamma function, and we know these are located along the real axis at 0 and the negative integers. In particular, due to our choice of \(k \), our contour integral avoids these poles. By Lemma 3 the integrals along the top and bottom tend to zero as \(k \to \infty \),
Proof of Mellin’s Theorem: For any positive rational number of the form $k = n + 1/2$ where $n \in \mathbb{Z}$, consider the contour integral

$$\frac{1}{2\pi i} \oint_{R_k} \Gamma(s)z^{-s} \, ds$$

where R_k is the rectangle with vertices $-k \pm ik$ and $\sigma_0 \pm ik$. Note that the only poles of the integrand come from poles of the Gamma function, and we know these are located along the real axis at 0 and the negative integers. In particular, due to our choice of k, our contour integral avoids these poles. By Lemma 3 the integrals along the top and bottom tend to zero as $k \to \infty$, and left sides tend to zero as $k \to \infty$ by Lemma 4.
Proof of Mellin’s Theorem: For any positive rational number of the form \(k = n + 1/2 \) where \(n \in \mathbb{Z} \), consider the contour integral

\[
\frac{1}{2\pi i} \oint_{R_k} \Gamma(s)z^{-s} \, ds
\]

where \(R_k \) is the rectangle with vertices \(-k \pm ik\) and \(\sigma_0 \pm ik\). Note that the only poles of the integrand come from poles of the Gamma function, and we know these are located along the real axis at 0 and the negative integers. In particular, due to our choice of \(k \), our contour integral avoids these poles. By Lemma 3 the integrals along the top and bottom tend to zero as \(k \to \infty \), and left sides tend to zero as \(k \to \infty \) by Lemma 4. Lemma 5 tells us the residues at the poles inside these rectangles.
Given all the above, by Cauchy’s Theorem we see that
Given all the above, by Cauchy’s Theorem we see that

\[
\frac{1}{2\pi i} \int_{\sigma_0 - i\infty}^{\sigma_0 + i\infty} \Gamma(s)z^{-s} \, ds
\]
Given all the above, by Cauchy’s Theorem we see that

\[\frac{1}{2\pi i} \int_{\sigma_0 - i\infty}^{\sigma_0 + i\infty} \Gamma(s)z^{-s} \, ds = \sum_{n \leq 0} \text{res}_{s=n} \left(\Gamma(s)z^{-s} \right) \]
Given all the above, by Cauchy’s Theorem we see that

\[
\frac{1}{2\pi i} \int_{\sigma_0 - i\infty}^{\sigma_0 + i\infty} \Gamma(s)z^{-s} \, ds = \sum_{n \leq 0} \text{res}_{s=n}(\Gamma(s)z^{-s})
\]

\[
= \sum_{n \leq 0} z^{-n} \frac{(-1)^n}{(-n)!}
\]
Given all the above, by Cauchy’s Theorem we see that

\[
\frac{1}{2\pi i} \int_{\sigma_0 - i\infty}^{\sigma_0 + i\infty} \Gamma(s)z^{-s} \, ds = \sum_{n \leq 0} \text{res}_{s=n}(\Gamma(s)z^{-s})
\]

\[= \sum_{n \leq 0} z^{-n} \frac{(-1)^n}{(-n)!} \]

\[= \sum_{m \geq 0} z^m \frac{(-1)^m}{m!} \]
Given all the above, by Cauchy’s Theorem we see that

$$\frac{1}{2\pi i} \int_{\sigma_0 - i\infty}^{\sigma_0 + i\infty} \Gamma(s)z^{-s} \, ds = \sum_{n \leq 0} \text{res}_{s=n} (\Gamma(s)z^{-s})$$

$$= \sum_{n \leq 0} z^{-n} \frac{(-1)^n}{(-n)!}$$

$$= \sum_{m \geq 0} z^m \frac{(-1)^m}{m!}$$

$$= e^{-z}.$$