Northern Illinois University, Math 680

September 25, 2020
More on Dirichlet Series

Corollary 1

If $D(s)$ is a Dirichlet series, then there is a σ_c (possibly $\pm \infty$) such that $D(s)$ converges for all $s = \sigma + it$ with $\sigma > \sigma_c$ and for no s with $\sigma < \sigma_c$.

Further, if $\sigma_0 > \sigma_c$, then there is a neighborhood of $s_0 = \sigma_0 + it_0$ in which $D(s)$ converges uniformly.

Corollary 2

If $D(s)$ is a Dirichlet series with $\sigma_c < \infty$, then $D(s)$ is analytic for all $s = \sigma + it$ with $\sigma > \sigma_c$, and $D'(s) = -\infty \sum_{n=1}^{\infty} a_n \log n n s$ uniformly in the half-plane given by $\sigma > \sigma_c$.
Corollary 1

If $D(s)$ is a Dirichlet series, then there is a σ_c (possibly $\pm \infty$) such that $D(s)$ converges for all $s = \sigma + it$ with $\sigma > \sigma_c$ and for no s with $\sigma < \sigma_c$. Further, if $\sigma_0 > \sigma_c$, then there is a neighborhood of $s_0 = \sigma_0 + it_0$ in which $D(s)$ converges uniformly.
More on Dirichlet Series

Corollary 1

If $D(s)$ is a Dirichlet series, then there is a σ_c (possibly $\pm \infty$) such that $D(s)$ converges for all $s = \sigma + it$ with $\sigma > \sigma_c$ and for no s with $\sigma < \sigma_c$. Further, if $\sigma_0 > \sigma_c$, then there is a neighborhood of $s_0 = \sigma_0 + it_0$ in which $D(s)$ converges uniformly.

Corollary 2

If $D(s)$ is a Dirichlet series with $\sigma_c < \infty$, then $D(s)$ is analytic for all $s = \sigma + it$ with $\sigma > \sigma_c$, and

$$D'(s) = - \sum_{n=1}^{\infty} \frac{a_n \log n}{n^s}$$

uniformly in the half-plane given by $\sigma > \sigma_c$.
Theorem 3

Let $D(s)$ be a Dirichlet series with σ_c as above.
Theorem 3

Let $D(s)$ be a Dirichlet series with σ_c as above. Write $A(x) = \sum_{n \leq x} a_n$.
Theorem 3

Let $D(s)$ be a Dirichlet series with σ_c as above. Write $A(x) = \sum_{n \leq x} a_n$. If $\sigma_c < 0$, then $A(x)$ is a bounded function (of x)
Theorem 3

Let $D(s)$ be a Dirichlet series with σ_c as above. Write $A(x) = \sum_{n \leq x} a_n$. If $\sigma_c < 0$, then $A(x)$ is a bounded function (of x) and

$$D(s) = s \int_1^\infty A(x)x^{-(s+1)} \, dx$$

for all $s = \sigma + it$ with $\sigma > 0$.
Theorem 3

Let $D(s)$ be a Dirichlet series with σ_c as above. Write $A(x) = \sum_{n \leq x} a_n$. If $\sigma_c < 0$, then $A(x)$ is a bounded function (of x) and

$$D(s) = s \int_1^\infty A(x)x^{-(s+1)} \, dx$$

for all $s = \sigma + it$ with $\sigma > 0$. If $\sigma_c \geq 0$, then

$$\limsup_{x \to \infty} \frac{\log |A(x)|}{\log x} = \sigma_c$$
Theorem 3

Let $D(s)$ be a Dirichlet series with σ_c as above. Write $A(x) = \sum_{n \leq x} a_n$. If $\sigma_c < 0$, then $A(x)$ is a bounded function (of x) and

$$D(s) = s \int_1^\infty A(x) x^{-(s+1)} \, dx$$

for all $s = \sigma + it$ with $\sigma > 0$. If $\sigma_c \geq 0$, then

$$\limsup_{x \to \infty} \frac{\log |A(x)|}{\log x} = \sigma_c$$

and

$$D(s) = s \int_1^\infty A(x) x^{-(s+1)} \, dx$$

for all $s = \sigma + it$ with $\sigma > \sigma_c$.
Proof:

In place of the equation

\[N_0 (R(N - 1) - R(N)) = aN \]

we used in the proof of the Theorem from Wednesday, we instead use

\[A(N) - A(N - 1) = aN. \]

Arguing almost exactly as in the proof of Wednesday's Theorem, we get

\[\sum_{n=1}^{N} a_n = A(N) \]

\[-s + \int_{N}^{1} A(x)dx \]

This is analogous to the equation

\[\sum_{n=M+1}^{N} a_n = R(M) \]

\[M_0 - s - R(N) \]

\[\int_{N}^{M} R(u)du \]

we arrived at in the proof of Wednesday's Theorem.
Proof: In place of the equation

\[N^{s_0}(R(N - 1) - R(N)) = a_N \]

we used in the proof of the Theorem from Wednesday,
Proof: In place of the equation

\[N^{s_0} (R(N - 1) - R(N)) = a_N \]

we used in the proof of the Theorem from Wednesday, we instead use

\[A(N) - A(N - 1) = a_N. \]
Proof: In place of the equation

$$N^{s_0}(R(N - 1) - R(N)) = a_N$$

we used in the proof of the Theorem from Wednesday, we instead use

$$A(N) - A(N - 1) = a_N.$$

Arguing almost exactly as in the proof of Wednesday’s Theorem,
Proof: In place of the equation

\[N^{s_0}(R(N-1) - R(N)) = a_N \]

we used in the proof of the Theorem from Wednesday, we instead use

\[A(N) - A(N - 1) = a_N. \]

Arguing almost exactly as in the proof of Wednesday’s Theorem, we get

\[\sum_{n=1}^{N} \frac{a_n}{n^s} = A(N)N^{-s} + s \int_1^N A(x)x^{-(s+1)} \, dx. \]
Proof: In place of the equation

\[N^{s_0} \left(R(N - 1) - R(N) \right) = a_N \]

we used in the proof of the Theorem from Wednesday, we instead use

\[A(N) - A(N - 1) = a_N. \]

Arguing almost exactly as in the proof of Wednesday’s Theorem, we get

\[\sum_{n=1}^{N} \frac{a_n}{n^s} = A(N)N^{-s} + s \int_{1}^{N} A(x)x^{-(s+1)} \, dx. \]

This is analogous to the equation

\[\sum_{n=M+1}^{N} \frac{a_n}{n^s} = R(M)M^{s_0-s} - R(N)N^{s_0-s} + (s_0 - s) \int_{M}^{N} R(u)u^{s_0-s-1} \, du \]

we arrived at in the proof of Wednesday’s Theorem.
Let

$$\theta > \limsup_{x \to \infty} \frac{\log |A(x)|}{\log x}.$$
Let
\[\theta > \limsup_{x \to \infty} \frac{\log |A(x)|}{\log x}. \]

Then letting \(N \to \infty \) in the equation above yields
Let

$$\theta > \limsup_{x \to \infty} \frac{\log |A(x)|}{\log x}.$$

Then letting $$N \to \infty$$ in the equation above yields

$$D(s) = s \int_{0}^{\infty} A(x)x^{-(s+1)} \, ds$$

whenever $$\Re(s) = \sigma > \theta.$$
Let
\[\theta > \limsup_{x \to \infty} \frac{\log |A(x)|}{\log x}. \]

Then letting \(N \to \infty \) in the equation above yields

\[D(s) = s \int_0^\infty A(x)x^{-(s+1)} \, ds \]

whenever \(\Re(s) = \sigma > \theta \).

Suppose that \(\sigma_c < 0 \).
Let
\[\theta > \limsup_{x \to \infty} \frac{\log |A(x)|}{\log x}. \]

Then letting \(N \to \infty \) in the equation above yields
\[D(s) = s \int_{0}^{\infty} A(x)x^{-(s+1)} \, ds \]
whenever \(\Re(s) = \sigma > \theta \).

Suppose that \(\sigma_c < 0 \). Then by Corollary 1 (set \(s = 0 \))
Let
\[\theta > \limsup_{x \to \infty} \frac{\log |A(x)|}{\log x}. \]

Then letting \(N \to \infty \) in the equation above yields
\[D(s) = s \int_{0}^{\infty} A(x)x^{-(s+1)} \, ds \]
whenever \(\Re(s) = \sigma > \theta. \)

Suppose that \(\sigma_c < 0. \) Then by Corollary 1 (set \(s = 0 \)) \(\sum a_n \) exists,
Let

$$\theta > \limsup_{x \to \infty} \frac{\log |A(x)|}{\log x}.$$

Then letting \(N \to \infty \) in the equation above yields

$$D(s) = s \int_0^\infty A(x)x^{-(s+1)} \, ds$$

whenever \(\Re(s) = \sigma > \theta \).

Suppose that \(\sigma_c < 0 \). Then by Corollary 1 (set \(s = 0 \)) \(\sum a_n \) exists, so that

$$\limsup_{x \to \infty} \frac{\log |A(x)|}{\log x} = 0$$
Let
\[\theta > \limsup_{x \to \infty} \frac{\log |A(x)|}{\log x}. \]

Then letting \(N \to \infty \) in the equation above yields
\[
D(s) = s \int_0^\infty A(x)x^{-(s+1)} \, ds
\]
whenever \(\Re(s) = \sigma > \theta \).

Suppose that \(\sigma_c < 0 \). Then by Corollary 1 (set \(s = 0 \)) \(\sum a_n \) exists, so that
\[
\limsup_{x \to \infty} \frac{\log |A(x)|}{\log x} = 0
\]
and whence
\[
D(s) = s \int_0^\infty A(x)x^{-(s+1)} \, ds
\]
whenever \(\Re(s) = \sigma > 0 \).
Now suppose that $\sigma_c \geq 0$.
Now suppose that $\sigma_c \geq 0$. By the same Corollary $D(s)$ diverges whenever $\Re(s) = \sigma < \sigma_c$.
Now suppose that $\sigma_c \geq 0$. By the same Corollary $D(s)$ diverges whenever $\Re(s) = \sigma < \sigma_c$, so we must have

$$\limsup_{x \to \infty} \frac{\log |A(x)|}{\log x} \geq \sigma_c.$$
Now suppose that $\sigma_c \geq 0$. By the same Corollary $D(s)$ diverges whenever $\Re(s) = \sigma < \sigma_c$, so we must have

$$\limsup_{x \to \infty} \frac{\log |A(x)|}{\log x} \geq \sigma_c.$$

Choose a $\sigma_0 > \sigma_c$.
Now suppose that $\sigma_c \geq 0$. By the same Corollary $D(s)$ diverges whenever $\Re(s) = \sigma < \sigma_c$, so we must have

$$\limsup_{x \to \infty} \frac{\log |A(x)|}{\log x} \geq \sigma_c.$$

Choose a $\sigma_0 > \sigma_c$.

By our equation

$$\sum_{n=M+1}^{N} \frac{a_n}{n^s} = R(M)M^{s_0-s} - R(N)N^{s_0-s} + (s_0 - s) \int_{M}^{N} R(u)u^{s_0-s-1} \, du$$

with $M = s = 0$,
Now suppose that $\sigma_c \geq 0$. By the same Corollary $D(s)$ diverges whenever $\Re(s) = \sigma < \sigma_c$, so we must have
\[
\limsup_{x \to \infty} \frac{\log |A(x)|}{\log x} \geq \sigma_c.
\]

Choose a $\sigma_0 > \sigma_c$.

By our equation
\[
\sum_{n=M+1}^{N} \frac{a_n}{n^s} = R(M)M^{s_0-s} - R(N)N^{s_0-s} + (s_0 - s) \int_{M}^{N} R(u)u^{s_0-s-1} \, du
\]
with $M = s = 0$, we have
\[
A(N) = -R(N)N^{\sigma_0} + \sigma_0 \int_{0}^{N} R(u)u^{\sigma_0-1} \, du,
\]
Now suppose that $\sigma_c \geq 0$. By the same Corollary $D(s)$ diverges whenever $\Re(s) = \sigma < \sigma_c$, so we must have

$$\limsup_{x \to \infty} \frac{\log |A(x)|}{\log x} \geq \sigma_c.$$

Choose a $\sigma_0 > \sigma_c$.

By our equation

$$\sum_{n=M+1}^{N} \frac{a_n}{n^s} = R(M)M^{s_0-s} - R(N)N^{s_0-s} + (s_0 - s) \int_{M}^{N} R(u)u^{s_0-s-1} \, du$$

with $M = s = 0$, we have

$$A(N) = -R(N)N^{\sigma_0} + \sigma_0 \int_{0}^{N} R(u)u^{\sigma_0-1} \, du,$$

where

$$R(u) = \sum_{n>u} \frac{a_n}{n^{\sigma_0}}.$$
By the hypothesis that $\sigma_0 > \sigma_c$,
By the hypothesis that $\sigma_0 > \sigma_c$, $R(u)$ is bounded as a function of u.
By the hypothesis that $\sigma_0 > \sigma_c$, $R(u)$ is bounded as a function of u. This shows that $|A(N)| \ll N^{\sigma_0}$
By the hypothesis that $\sigma_0 > \sigma_c$, $R(u)$ is bounded as a function of u. This shows that $|A(N)| \ll N^{\sigma_0}$ where the implicit constant doesn’t depend on N.

Definition 1
For two real-valued functions $f(x)$ and $g(x)$ defined and positive on some ray (a, ∞), we write $f(x) \gg g(x)$ and $g(x) \ll f(x)$ if for some $C > 0$ we have $f(x) \geq Cg(x)$ for all $x \in (a, \infty)$.
By the hypothesis that $\sigma_0 > \sigma_c$, $R(u)$ is bounded as a function of u. This shows that $|A(N)| \ll N^{\sigma_0}$ where the implicit constant doesn’t depend on N. Whence

$$\limsup_{x \to \infty} \frac{\log |A(x)|}{\log x} \leq \sigma_0.$$
By the hypothesis that $\sigma_0 > \sigma_c$, $R(u)$ is bounded as a function of u. This shows that $|A(N)| \ll N^{\sigma_0}$ where the implicit constant doesn’t depend on N. Whence
\[
\limsup_{x \to \infty} \frac{\log |A(x)|}{\log x} \leq \sigma_0.
\]
Thus
\[
\limsup_{x \to \infty} \frac{\log |A(x)|}{\log x} \leq \sigma_c,
\]
concluding the proof.
By the hypothesis that $\sigma_0 > \sigma_c$, $R(u)$ is bounded as a function of u. This shows that $|A(N)| \ll N^{\sigma_0}$ where the implicit constant doesn’t depend on N. Whence

$$\limsup_{x \to \infty} \frac{\log |A(x)|}{\log x} \leq \sigma_0.$$

Thus

$$\limsup_{x \to \infty} \frac{\log |A(x)|}{\log x} \leq \sigma_c,$$

concluding the proof.

Definition 1

For two real-valued functions $f(x)$ and $g(x)$ defined and positive on some ray (a, ∞),
By the hypothesis that $\sigma_0 > \sigma_c$, $R(u)$ is bounded as a function of u. This shows that $|A(N)| \ll N^{\sigma_0}$ where the implicit constant doesn’t depend on N. Whence

$$\limsup_{x \to \infty} \frac{\log |A(x)|}{\log x} \leq \sigma_0.$$

Thus

$$\limsup_{x \to \infty} \frac{\log |A(x)|}{\log x} \leq \sigma_c,$$

concluding the proof.

Definition 1

For two real-valued functions $f(x)$ and $g(x)$ defined and positive on some ray (a, ∞), we write $f(x) \gg g(x)$ and $g(x) \ll f(x)$.
By the hypothesis that $\sigma_0 > \sigma_c$, $R(u)$ is bounded as a function of u. This shows that $|A(N)| \ll N^{\sigma_0}$ where the implicit constant doesn’t depend on N. Whence

$$\limsup_{x \to \infty} \frac{\log |A(x)|}{\log x} \leq \sigma_0.$$

Thus

$$\limsup_{x \to \infty} \frac{\log |A(x)|}{\log x} \leq \sigma_c,$$

concluding the proof.

Definition 1

For two real-valued functions $f(x)$ and $g(x)$ defined and positive on some ray (a, ∞), we write $f(x) \gg g(x)$ and $g(x) \ll f(x)$ if for some $C > 0$ we have $f(x) \geq Cg(x)$ for all $x \in (a, \infty)$.
Definition 2

Given a Dirichlet series, the quantity σ_c above is called the *abscissa of convergence*.

The *abscissa of absolute convergence*, σ_a, is defined to be

$$\sigma_a = \inf \{ \sigma : D(s) \text{ converges absolutely for all } s \in \mathbb{C} \text{ of the form } s = \sigma + it \}.$$

Though a Dirichlet series may converge at a given value of s, that doesn't imply it converges absolutely. For example, consider the Dirichlet series

$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n^s},$$

which converges (as we've seen) for all s with $\Re(s) > 0$, but only converges absolutely when $\Re(s) > 1$.

Definition 2
Given a Dirichlet series, the quantity σ_c above is called the \textit{abscissa of convergence}. The \textit{abscissa of absolute convergence}, σ_a,

Definition 2

Given a Dirichlet series, the quantity σ_c above is called the abscissa of convergence. The abscissa of absolute convergence, σ_a, is defined to be

$$\sigma_a = \inf\{\sigma : D(s) \text{ converges absolutely for all } s \in \mathbb{C} \text{ of the form } s = \sigma + it\}.$$
Definition 2

Given a Dirichlet series, the quantity \(\sigma_c \) above is called the *abscissa of convergence*. The *abscissa of absolute convergence*, \(\sigma_a \), is defined to be

\[
\sigma_a = \inf \{ \sigma : D(s) \text{ converges absolutely for all } s \in \mathbb{C} \text{ of the form } s = \sigma + it \}.
\]

Though a Dirichlet series may converge at a given value of \(s \),
Definition 2

Given a Dirichlet series, the quantity σ_c above is called the *abscissa of convergence*. The *abscissa of absolute convergence*, σ_a, is defined to be

$$\sigma_a = \inf\{\sigma : D(s) \text{ converges absolutely for all } s \in \mathbb{C} \text{ of the form } s = \sigma + it\}.$$

Though a Dirichlet series may converge at a given value of s, that doesn't imply it converges absolutely.
Definition 2

Given a Dirichlet series, the quantity σ_c above is called the *abscissa of convergence*. The *abscissa of absolute convergence*, σ_a, is defined to be

$$\sigma_a = \inf \{ \sigma : D(s) \text{ converges absolutely for all } s \in \mathbb{C} \text{ of the form } s = \sigma + it \}.$$

Though a Dirichlet series may converge at a given value of s, that doesn't imply it converges absolutely. For example, consider the Dirichlet series

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^s},$$
Definition 2

Given a Dirichlet series, the quantity \(\sigma_c \) above is called the \textit{abscissa of convergence}. The \textit{abscissa of absolute convergence}, \(\sigma_a \), is defined to be

\[
\sigma_a = \inf \{ \sigma : D(s) \text{ converges absolutely for all } s \in \mathbb{C} \text{ of the form } s = \sigma + it \}.
\]

Though a Dirichlet series may converge at a given value of \(s \), that doesn't imply it converges absolutely. For example, consider the Dirichlet series

\[
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^s},
\]

which converges (as we’ve seen) for all \(s \) with \(\Re(s) > 0 \), but only converges absolutely when \(\Re(s) > 1 \).
Lemma 4

For any Dirichlet series, \(\sigma_a \leq \sigma_c + 1 \).
Lemma 4

For any Dirichlet series, $\sigma_a \leq \sigma_c + 1$.

Proof:
Lemma 4

For any Dirichlet series, $\sigma_a \leq \sigma_c + 1$.

Proof: Let $\epsilon > 0$, so that $\sum a_n n^{-\sigma_c - \epsilon}$ converges.
Lemma 4

For any Dirichlet series, $\sigma_a \leq \sigma_c + 1$.

Proof: Let $\epsilon > 0$, so that $\sum a_n n^{-\sigma_c - \epsilon}$ converges. This implies that $|a_n| \ll n^{\sigma_c + \epsilon}$, since the summands must go to zero.
Lemma 4

For any Dirichlet series, $\sigma_a \leq \sigma_c + 1$.

Proof: Let $\epsilon > 0$, so that $\sum a_n n^{-\sigma_c - \epsilon}$ converges. This implies that $|a_n| \ll n^{\sigma_c + \epsilon}$, since the summands must go to zero. Thus $\sum |a_n| n^{-\sigma_c - 1 - 2\epsilon}$ is convergent,
Lemma 4

For any Dirichlet series, $\sigma_a \leq \sigma_c + 1$.

Proof: Let $\epsilon > 0$, so that $\sum a_n n^{-\sigma_c - \epsilon}$ converges. This implies that $|a_n| \ll n^{\sigma_c + \epsilon}$, since the summands must go to zero. Thus $\sum |a_n| n^{-\sigma_c - 1 - 2\epsilon}$ is convergent, implying that $\sigma_a \leq \sigma_c + 1 + 2\epsilon$.
Lemma 4

For any Dirichlet series, \(\sigma_a \leq \sigma_c + 1 \).

Proof: Let \(\epsilon > 0 \), so that \(\sum a_n n^{-\sigma_c - \epsilon} \) converges. This implies that \(|a_n| \ll n^{\sigma_c + \epsilon} \), since the summands must go to zero. Thus \(\sum |a_n| n^{-\sigma_c - 1 - 2\epsilon} \) is convergent, implying that \(\sigma_a \leq \sigma_c + 1 + 2\epsilon \). Since \(\epsilon \) was arbitrary, we see that \(\sigma_a \leq \sigma_c + 1 \).
Theorem 5

Suppose $D(s)$ is a Dirichlet series with $\sigma_c < \infty$.
Theorem 5

Suppose $D(s)$ is a Dirichlet series with $\sigma_c < \infty$. Let $0 < \epsilon < \delta < 1$. Then

$$|D(s)| \ll (1 + |t|)^{1 - \delta + \epsilon}$$

for all $s = \sigma + it$ with $\sigma \geq \sigma_c + \delta$, where the implicit constant depends on ϵ and δ.
Theorem 5

Suppose $D(s)$ is a Dirichlet series with $\sigma_c < \infty$. Let $0 < \epsilon < \delta < 1$. Then

$$|D(s)| \ll (1 + |t|)^{1-\delta+\epsilon}$$

for all $s = \sigma + it$ with $\sigma \geq \sigma_c + \delta$,
Theorem 5

Suppose $D(s)$ is a Dirichlet series with $\sigma_c < \infty$. Let $0 < \epsilon < \delta < 1$. Then

$$|D(s)| \ll (1 + |t|)^{1-\delta + \epsilon}$$

for all $s = \sigma + it$ with $\sigma \geq \sigma_c + \delta$, where the implicit constant depends on ϵ and δ.
Proof:

\[s_0 = \sigma_c + \epsilon \]

in the equation

\[N \sum_{n=1}^{M+1} a_n s_n = R(M) s_0 - s_0 - R(N) N s_0 + (s_0 - s) \int N M R(u) u \sigma_c + \epsilon - s - 1 \, du. \]

Assuming that \(s = \sigma + \epsilon \) with \(\sigma \geq \sigma_c + \delta > \sigma_c + \epsilon \), we may let \(N \rightarrow \infty \) and get

\[D(s) - M \sum_{n=1}^{M+1} a_n n s_n = \infty \sum_{n=M+1}^{\infty} a_n n s_n = R(M) M \sigma_c + \epsilon - s - (\sigma_c + \epsilon - s - 1) \int M R(u) u \sigma_c + \epsilon - s - 1 \, du. \]
Proof: Set $s_0 = \sigma_c + \epsilon$ in the equation
Proof: Set $s_0 = \sigma_c + \epsilon$ in the equation

$$\sum_{n=M+1}^{N} \frac{a_n}{n^s} = R(M)M^{s_0-s} - R(N)N^{s_0-s} + (s_0 - s) \int_{M}^{N} R(u)u^{s_0-s-1} du.$$
Proof: Set $s_0 = \sigma_c + \epsilon$ in the equation

$$\sum_{n=M+1}^{N} \frac{a_n}{n^s} = R(M)M^{s_0-s} - R(N)N^{s_0-s} + (s_0 - s) \int_{M}^{N} R(u)u^{s_0-s-1} du.$$

Assuming that $s = \sigma + it$ with $\sigma \geq \sigma_c + \delta > \sigma_c + \epsilon$,

Proof: Set \(s_0 = \sigma_c + \epsilon \) in the equation

\[
\sum_{n=M+1}^{N} \frac{a_n}{n^s} = R(M)M^{s_0-s} - R(N)N^{s_0-s} + (s_0 - s) \int_{M}^{N} R(u)u^{s_0-s-1} du.
\]

Assuming that \(s = \sigma + it \) with \(\sigma \geq \sigma_c + \delta > \sigma_c + \epsilon \), we may let \(N \to \infty \) and get
Proof: Set \(s_0 = \sigma_c + \epsilon \) in the equation

\[
\sum_{n=M+1}^{N} \frac{a_n}{n^s} = R(M)M^{s_0-s} - R(N)N^{s_0-s} + (s_0 - s) \int_{M}^{N} R(u)u^{s_0-s-1} \, du.
\]

Assuming that \(s = \sigma + it \) with \(\sigma \geq \sigma_c + \delta > \sigma_c + \epsilon \), we may let \(N \to \infty \) and get

\[
D(s) - \sum_{n=1}^{M} \frac{a_n}{n^s} = \sum_{n=M+1}^{\infty} \frac{a_n}{n^s}.
\]
Proof: Set $s_0 = \sigma_c + \epsilon$ in the equation

$$
\sum_{n=M+1}^{N} \frac{a_n}{n^s} = R(M)M^{s_0-s} - R(N)N^{s_0-s} + (s_0 - s) \int_{M}^{N} R(u)u^{s_0-s-1} \, du.
$$

Assuming that $s = \sigma + it$ with $\sigma \geq \sigma_c + \delta > \sigma_c + \epsilon$, we may let $N \rightarrow \infty$ and get

$$
D(s) - \sum_{n=1}^{M} \frac{a_n}{n^s} = \sum_{n=M+1}^{\infty} \frac{a_n}{n^s} = R(M)M^{\sigma_c+\epsilon-s} + (\sigma_c + \epsilon - s) \int_{M}^{\infty} R(u)u^{\sigma_c+\epsilon-s-1} \, du.
$$
Now $D(\sigma_c + \epsilon)$ is convergent,
Now $D(\sigma_c + \epsilon)$ is convergent, so we know that $|a_n| \ll n^{\sigma_c + \epsilon}$ and $|R(u)| \ll 1$.
Now $D(\sigma_c + \epsilon)$ is convergent, so we know that $|a_n| \ll n^{\sigma_c + \epsilon}$ and $|R(u)| \ll 1$. Hence

$$\left| \sum_{n=1}^{M} \frac{a_n}{n^s} \right| \leq \sum_{n=1}^{M} \frac{|a_n|}{|n^s|}$$
Now $D(\sigma_c + \epsilon)$ is convergent, so we know that $|a_n| \ll n^{\sigma_c + \epsilon}$ and $|R(u)| \ll 1$. Hence

$$\left| \sum_{n=1}^{M} \frac{a_n}{n^s} \right| \leq \sum_{n=1}^{M} \frac{|a_n|}{|n^s|} = \sum_{n=1}^{M} \frac{|a_n|}{n^\sigma}$$
Now \(D(\sigma_c + \epsilon) \) is convergent, so we know that \(|a_n| \ll n^{\sigma_c + \epsilon} \) and \(|R(u)| \ll 1 \). Hence

\[
\left| \sum_{n=1}^{M} \frac{a_n}{n^s} \right| \leq \sum_{n=1}^{M} \frac{|a_n|}{|n^s|} = \sum_{n=1}^{M} \frac{|a_n|}{n^\sigma} \ll \sum_{n=1}^{M} n^{\sigma_c + \epsilon - \sigma}
\]
Now \(D(\sigma_c + \epsilon) \) is convergent, so we know that \(|a_n| \ll n^{\sigma_c + \epsilon} \) and \(|R(u)| \ll 1 \). Hence

\[
\left| \sum_{n=1}^{M} \frac{a_n}{n^s} \right| \leq \sum_{n=1}^{M} \frac{|a_n|}{|n^s|} = \sum_{n=1}^{M} \frac{|a_n|}{n^\sigma} \ll \sum_{n=1}^{M} n^{\sigma_c + \epsilon - \sigma} \ll M^{1+\sigma_c + \epsilon - \sigma}
\]
Now $D(\sigma_c + \epsilon)$ is convergent, so we know that $|a_n| \ll n^{\sigma_c + \epsilon}$ and $|R(u)| \ll 1$. Hence

$$\left| \sum_{n=1}^{M} \frac{a_n}{n^s} \right| \leq \sum_{n=1}^{M} \frac{|a_n|}{|n^s|} \leq \sum_{n=1}^{M} \frac{|a_n|}{n^\sigma} \ll \sum_{n=1}^{M} n^{\sigma_c + \epsilon - \sigma} \ll M^{1 + \sigma_c + \epsilon - \sigma} \ll M^{1 + \epsilon - \delta},$$
Now $D(\sigma_c + \epsilon)$ is convergent, so we know that $|a_n| \ll n^{\sigma_c + \epsilon}$ and $|R(u)| \ll 1$. Hence

$$\left| \sum_{n=1}^{M} \frac{a_n}{n^s} \right| \leq \sum_{n=1}^{M} \frac{|a_n|}{|n^s|}$$

$$= \sum_{n=1}^{M} \frac{|a_n|}{n^\sigma}$$

$$\ll \sum_{n=1}^{M} n^{\sigma_c + \epsilon - \sigma}$$

$$\ll M^{1+\sigma_c + \epsilon - \sigma}$$

$$\ll M^{1+\epsilon - \delta}.$$

$$|R(M)M^{\sigma_c + \epsilon - s}| \ll M^{\sigma_c + \epsilon - \sigma} \leq M^{\epsilon - \delta},$$
and
and

\[\left| (\sigma_c + \epsilon - s) \int_{\infty}^{\infty} R(u) u^{\sigma_c + \epsilon - s - 1} \, du \right| \leq |(\sigma_c + \epsilon - s)| \int_{\infty}^{\infty} |R(u)| u^{\sigma_c + \epsilon - \sigma - 1} \, du\]
and

\[
\left| (\sigma_c + \epsilon - s) \int_M^\infty R(u) u^{\sigma_c + \epsilon - s - 1} \, du \right|
\]

\[
\leq |(\sigma_c + \epsilon - s)| \int_M^\infty |R(u)| u^{\sigma_c + \epsilon - \sigma - 1} \, du
\]

\[
\ll (\sigma + |t| - \sigma_c - \epsilon) \int_M^\infty u^{\sigma_c + \epsilon - \sigma - 1} \, du
\]
and

\[
\left| (\sigma_c + \epsilon - s) \int_M^\infty R(u) u^{\sigma_c + \epsilon - s - 1} \, du \right|
\leq \left| (\sigma_c + \epsilon - s) \right| \int_M^\infty |R(u)| u^{\sigma_c + \epsilon - \sigma - 1} \, du
\ll (\sigma + |t| - \sigma_c - \epsilon) \int_M^\infty u^{\sigma_c + \epsilon - \sigma - 1} \, du
= \left(1 + \frac{|t|}{\sigma - \sigma_c - \epsilon} \right) M^{\sigma_c + \epsilon - \sigma}
\]
\[
\left| (\sigma_c + \epsilon - s) \int_M^\infty R(u) u^{\sigma_c + \epsilon - s - 1} \, du \right|
\]
\[
\leq \left| (\sigma_c + \epsilon - s) \right| \int_M^\infty |R(u)| u^{\sigma_c + \epsilon - \sigma - 1} \, du
\]
\[
\ll (\sigma + |t| - \sigma_c - \epsilon) \int_M^\infty u^{\sigma_c + \epsilon - \sigma - 1} \, du
\]
\[
= \left(1 + \frac{|t|}{\sigma - \sigma_c - \epsilon} \right) M^{\sigma_c + \epsilon - \sigma}
\]
\[
\ll (1 + |t|) M^{\epsilon - \delta},
\]
and

\[\left| (\sigma_c + \epsilon - s) \int_{M}^{\infty} R(u) u^{\sigma_c+\epsilon-s-1} \, du \right| \]

\[\leq \left| (\sigma_c + \epsilon - s) \right| \int_{M}^{\infty} |R(u)| u^{\sigma_c+\epsilon-\sigma-1} \, du \]

\[\ll (\sigma + |t| - \sigma_c - \epsilon) \int_{M}^{\infty} u^{\sigma_c+\epsilon-\sigma-1} \, du \]

\[= \left(1 + \frac{|t|}{\sigma - \sigma_c - \epsilon} \right) M^{\sigma_c+\epsilon-\sigma} \]

\[\ll (1 + |t|) M^{\epsilon-\delta}, \]

where the implicit constant depends on \(\epsilon \) and \(\delta \).
The above together with the equation
The above together with the equation

\[D(s) - \sum_{n=1}^{M} \frac{a_n}{n^s} = \sum_{n=M+1}^{\infty} \frac{a_n}{n^s} = R(M)M^{\sigma_c+\epsilon-s} + (\sigma_c + \epsilon - s) \int_{M}^{\infty} R(u)u^{\sigma_c+\epsilon-s-1} \, du \]

gives
The above together with the equation

\[
D(s) - \sum_{n=1}^{M} \frac{a_n}{n^s} = \sum_{n=M+1}^{\infty} \frac{a_n}{n^s} = R(M)M^{\sigma_c + \epsilon - s} + (\sigma_c + \epsilon - s) \int_{M}^{\infty} R(u)u^{\sigma_c + \epsilon - s - 1} \, du
\]

gives

\[
|D(s)| \ll \left| \sum_{n=1}^{M} \frac{a_n}{n^s} \right| + |R(M)M^{\sigma_c + \epsilon - s}| + \left| (\sigma_c + \epsilon - s) \int_{M}^{\infty} R(u)u^{\sigma_c + \epsilon - s - 1} \, du \right|
\]
The above together with the equation

\[D(s) - \sum_{n=1}^{M} \frac{a_n}{n^s} = \sum_{n=M+1}^{\infty} \frac{a_n}{n^s} \]

\[= R(M) M^{\sigma_c + \epsilon - s} + (\sigma_c + \epsilon - s) \int_{M}^{\infty} R(u) u^{\sigma_c + \epsilon - s - 1} \, du \]

gives

\[|D(s)| \ll \left| \sum_{n=1}^{M} \frac{a_n}{n^s} \right| + |R(M) M^{\sigma_c + \epsilon - s}| \]

\[+ \left| (\sigma_c + \epsilon - s) \int_{M}^{\infty} R(u) u^{\sigma_c + \epsilon - s - 1} \, du \right| \]

\[\ll M^{1+\epsilon-\delta} + (1 + |t|) M^{\epsilon-\delta}. \]
The above together with the equation

\[D(s) - \sum_{n=1}^{M} \frac{a_n}{n^s} = \sum_{n=M+1}^{\infty} \frac{a_n}{n^s} \]

\[= R(M)M^{\sigma_c+\epsilon-s} + (\sigma_c + \epsilon - s) \int_{M}^{\infty} R(u)u^{\sigma_c+\epsilon-s-1} \, du \]

gives

\[|D(s)| \ll \left| \sum_{n=1}^{M} \frac{a_n}{n^s} \right| + |R(M)M^{\sigma_c+\epsilon-s}| \]

\[+ \left| (\sigma_c + \epsilon - s) \int_{M}^{\infty} R(u)u^{\sigma_c+\epsilon-s-1} \, du \right| \]

\[\ll M^{1+\epsilon-\delta} + (1 + |t|)M^{\epsilon-\delta}. \]

Setting \(M = [1 + |t|] \) completes the proof.