Our goal here is to prove the following theorem due to Hardy.

Theorem (Hardy): There are infinitely many zeros ρ of $\zeta(s)$ with $\Re(s) = 1/2$.

The proof will require some preparatory steps.

Theorem (Mellin): For all $z \in \mathbb{C}$ with $\Re(z) > 0$ and all $\sigma_0 > 0$,

$$
\frac{1}{2\pi i} \int_{\sigma_0-i\infty}^{\sigma_0+i\infty} \Gamma(s) z^{-s} \, ds = e^{-z}.
$$

Proof: For any positive rational number of the form $k = n + 1/2$, $n \in \mathbb{Z}$, consider the contour integral

$$
\frac{1}{2\pi i} \oint_{R_k} \Gamma(s) z^{-s} \, ds
$$

where R_k is the rectangle with vertices $-k \pm ik$ and $\sigma_0 \pm ik$. Note that the only poles of the integrand come from poles of the Gamma function, and we know these are located along the real axis at 0 and the negative integers. In particular, due to our choice of k, our contour integral avoids these poles. By exercise 26, the integrals along the top, bottom, and left sides tend to zero as $k \to \infty$. Given this, by Cauchy’s Theorem and exercise 27 we see that

$$
\frac{1}{2\pi i} \int_{\sigma_0-i\infty}^{\sigma_0+i\infty} \Gamma(s) z^{-s} \, ds = \sum_{n \leq 0} \text{res}_{s=n} (\Gamma(s) z^{-s})
$$

$$
= \sum_{n \leq 0} z^{-n} \frac{(-1)^n}{(-n)!}
$$

$$
= \sum_{m \geq 0} z^m \frac{(-1)^m}{m!}
$$

$$
= e^{-z}.
$$

Lemma 1: If $\Re(z) > 0$ and $\sigma_0 > 1$, then

$$
\frac{1}{2\pi i} \int_{\sigma_0-i\infty}^{\sigma_0+i\infty} \zeta(s) \Gamma(s/2)(\pi z)^{-s/2} \, ds = 2 \sum_{n \geq 1} e^{-\pi n^2 z}.
$$

Proof: Set $w = \pi n^2 z$ (and use the obvious change of variables) in Mellin’s Theorem above to get

$$
2e^{-\pi n^2 z} = 2e^{-w}
$$

$$
= \frac{1}{2\pi i} \int_{\sigma_0-i\infty}^{\sigma_0+i\infty} \Gamma(s/2) w^{-s/2} \, ds
$$

$$
= \frac{1}{2\pi i} \int_{\sigma_0-i\infty}^{\sigma_0+i\infty} \Gamma(s/2)(\pi z)^{-s/2} \frac{1}{n^s} \, ds,
$$
whence
\[2 \sum_{n \geq 1} e^{-\pi n^2 z} = \sum_{n \geq 1} \frac{1}{2\pi i} \int_{\sigma_0 - i\infty}^{\sigma_0 + i\infty} \Gamma(s/2)(\pi z)^{-s/2} \frac{1}{n^s} \, ds. \]

By Stirling’s formula \(|\Gamma((\sigma_0 + it)/2)| \gg (|t|/2)^{(\sigma_0-1)/2}e^{-\pi|t|^2/4} \) for \(|t| \geq 1\), say. Writing \(z = re^{i\theta}\) we get \(|\Gamma((\sigma_0 + it)/2)(\pi z)^{-(\sigma_0+it)/2}| \ll |t|(|\sigma_0-1|/2)e^{-\pi|t|^2/4}e^{i\theta/2} \) for \(|t| \geq 1\), where the implicit constant now depends on \(\sigma_0\) and \(|z|\) but is independent of \(t\). Since \(\Re(z) > 0\) we have \(-\pi/2 < \theta < \pi/2\). We thus see that
\[\int_{-\infty}^{\infty} |\Gamma((\sigma_0 + it)/2)||(\pi z)^{-(\sigma_0+it)/2}| \, dt \]
is convergent. Now since \(\sigma_0 > 1\) we may interchange the summation and the integration above to get the lemma.

Lemma 2: For \(T \geq 2\)
\[\int_{1/2}^{T} \zeta(1/2 + it) \, dt = T + O(T^{1/2}), \]
where the implicit constant is absolute.

Proof: Let \(R\) be the rectangle with vertices \(1/2 + i, 2 + i, 1/2 + iT,\) and \(2 + iT\). Since \(\zeta(s)\) is analytic in the complex plane except for the pole at \(s = 1\), it is analytic within this rectangle, so that
\[(1) \quad \oint_R \zeta(s) \, ds = 0. \]

Obviously the integral along the bottom of the rectangle
\[\int_{1/2}^{2} \zeta(\sigma + i) \, d\sigma \]
is a constant. For the top, using exercise 28 we have
\[
\left| \int_{1/2}^{2} \zeta(\sigma + iT) \, d\sigma \right| \leq \int_{1/2}^{2} |\zeta(\sigma + iT)| \, d\sigma
\ll \int_{1/2}^{2} (1 + T^{1-\sigma}) \log T \, d\sigma
\ll \log T + \int_{1/2}^{2} T^{1-\sigma} \log T \, d\sigma
= \log T - T^{1-\sigma} \big|_{\sigma=1/2}^{\sigma=2}
\ll T^{1/2}.
\]
For the integral along the right side of R we have
\[
\int_1^T \zeta(2 + it) \, dt = \int_1^T \sum_{n \geq 1} \frac{1}{n^{2+it}} \, dt \\
= \sum_{n \geq 1} \frac{1}{n^2} \int_1^T \frac{t}{n^2} \, dt \\
= \int_1^T 1 \, dt + \sum_{n \geq 2} \frac{1}{n^2} \int_1^T \frac{t}{n^2} \, dt \\
= (T - 1) + \sum_{n \geq 2} \frac{n^{-i} - n^{-iT}}{in^2 \log n} \\
= T + O(T^{1/2})
\]

The lemma follows from these estimates and (1).

Proof of Theorem: Fix a T for the moment (a “large” T) and consider the contour integral
\[
\frac{1}{2\pi i} \oint_C \zeta(s) \Gamma(s/2)(\pi z)^{-s/2} \, ds,
\]
where C is the rectangle with vertices $1/2 \pm iT$ and $2 \pm iT$. As in Lemma 1, we will assume z is satisfies $\Re(z) > 0$. In particular, $z \neq 0$ so that the $(\pi z)^{-s/2}$ portion of the integrand has no poles. Certainly the Gamma factor has no poles within the contour, so that we just have the one (simple) pole at $s = 1$. Since the residue of $\zeta(s)$ at $s = 1$ is 1, we get
\[
\frac{1}{2\pi i} \oint_C \zeta(s) \Gamma(s/2)(\pi z)^{-s/2} \, ds = \Gamma(1/2)(\pi z)^{-1/2} = z^{-1/2}.
\]

Estimating with Stirling’s formula exactly as in the proof of Lemma 1 and using exercise 28 to estimate the zeta function, we see that the integrals along the top and bottom portion tend to 0 as $T \to \infty$. Thus
\[
\frac{1}{2\pi i} \int_{2-i\infty}^{2+i\infty} \zeta(s) \Gamma(s/2)(\pi z)^{-s/2} \, ds - \frac{1}{2\pi i} \int_{1/2-i\infty}^{1/2+i\infty} \zeta(s) \Gamma(s/2)(\pi z)^{-s/2} \, ds = z^{-1/2}.
\]

Via this and Lemma 1,
\[
\frac{1}{2\pi} \int_{-\infty}^{\infty} \zeta(1/2 + it) \Gamma(1/4 + it/2) \pi^{-1/4-it/2} z^{-it/2} \, ds = \frac{z^{1/4}}{2\pi i} \int_{1/2-i\infty}^{1/2+i\infty} \zeta(s) \Gamma(s/2)(\pi z)^{-s/2} \, ds \\
= \frac{z^{1/4}}{2\pi i} \int_{2-i\infty}^{2+i\infty} \zeta(s) \Gamma(s/2)(\pi z)^{-s/2} \, ds - z^{-1/4} \\
= z^{1/4} 2 \sum_{n=1}^{\infty} e^{-\pi n^2 z} - z^{-1/4}.
\]

For notational convenience set $\zeta(s) = \frac{1}{2} s(s-1) \zeta(s) \Gamma(s/2) \pi^{-s/2}$; this is handy since the functional equation now reads
\[
\zeta(s) = \xi(1-s).
\]
Note that for \(s = \sigma > 0 \)
\[
\xi(s) = \xi(\sigma) = \frac{1}{2} \sigma(\sigma - 1) \zeta(\sigma) \Gamma(\sigma/2) \pi^{-\sigma/2} = \frac{1}{2} \sigma(\sigma - 1)(1 - 2^{1-\sigma})^{-1} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^\sigma} \Gamma(\sigma/2) \pi^{-\sigma/2} \in \mathbb{R}.
\]
Since this holds for all positive \(\sigma \), the functional equation (3) implies that \(\xi(\sigma) \in \mathbb{R} \) for all \(\sigma \in \mathbb{R} \). Hence by the Schwartz reflection principle \(\xi(\overline{\sigma}) = \overline{\xi(\sigma)} \), so that in particular
\[
\xi(1/2 + it) = \overline{\xi(1/2 - it)} = \overline{\xi(1 - (1/2 - it))} = \overline{\xi(1/2 + it)}.
\]
In other words, \(\xi(s) \in \mathbb{R} \) whenever \(\Re(s) = 1/2 \). But for \(s = 1/2 + it \) we also have
\[
s(s - 1) = (1/2 + it)(it - 1/2) = -(t^2 + 1/4) \in \mathbb{R}.
\]
We therefore conclude that the \(\zeta(1/2 + it)\Gamma(1/4 + it/2)\pi^{-1/4-it/4} \) portion of the integrand on the left side of (2) is real.

For real \(t \) write
\[
A(t) = \frac{\zeta(1/2 + it)\Gamma(1/4 + it/2)\pi^{-1/4-it/2}}{|\Gamma(1/4 + it/2)\pi^{-1/4-it/2}|}, \quad B(t) = \frac{|\Gamma(1/4 + it/2)\pi^{-1/4-it/2}|}{\pi^{it/2}}.
\]
We saw above that the numerator in \(A(t) \) is real, so that \(A(t) \in \mathbb{R} \). We set \(z = e^{i\theta} \) for \(\theta \in \mathbb{R} \) to be determined. Then \(z^{it/2} = e^{-\theta t/2} \in \mathbb{R} \), so that \(B(t) \in \mathbb{R} \) as well. We now have
\[
(1) \quad \int_{-\infty}^{\infty} \zeta(1/2 + it)\Gamma(1/4 + it/2)\pi^{-1/4-it/2} z^{-it/2} dt = \int_{-\infty}^{\infty} A(t)B(t) dt,
\]
where \(A(t), B(t) \in \mathbb{R} \) with \(B(t) > 0 \) assuming that \(z \) is of the form \(z = e^{i\theta} \). Further, we clearly see that \(A(t) = 0 \) in the integrand precisely when \(\zeta(1/2 + it) = 0 \).

We now take \(\theta = \pi/2 - \delta \) for a “small” \(\delta \) (note that this implies \(\Re(z) > 0 \), as required). Then \(z^{-it/2} = e^{(\pi/2-\delta)t/2} \). By Stirling’s formula we have \(|\Gamma(1/4 + it/2)| \ll |t|^{-1/4} e^{-\pi|t|/4} \) for “large” \(|t| \). In particular, we use this for \(1/2\delta \leq t \leq 1/\delta \) to see that \(B(t) \gg \delta^{1/4} \) for \(1/2\delta \leq t \leq 1/\delta \). Recalling that \(B(t) > 0 \), we have by the above (with sufficiently small \(\delta \))
\[
\int_{-\infty}^{\infty} |A(t)||B(t)| dt \geq \int_{1/2\delta}^{1/\delta} |A(t)||B(t)| dt \gg \delta^{1/4} \int_{1/2\delta}^{1/\delta} |\zeta(1/2 + it)| dt \gg \delta^{-3/4}.
\]
For the last inequality here we are using Lemma 2 with \(T = 1/\delta \) and \(T = 1/2\delta \), with 1/\(\delta \) “large” (i.e., \(\delta \)
“small”). On the other hand, $|z| \gg 1$ since δ is “small”, so that by (2) and (4) (setting $v = u\sqrt{\pi \sin(\delta))}$

$$
\left| \frac{1}{2\pi} \int_{-\infty}^{\infty} A(t)B(t) \, dt \right| = \left| -z^{-1/4} + z^{1/4} 2 \sum_{n=1}^{\infty} e^{-\pi n^2 z} \right|
\ll 1 + \sum_{n \geq 1} |e^{-\pi n^2 z}|
= 1 + \sum_{n \geq 1} e^{-\pi n^2 \cos(\pi/2 - \delta)}
= 1 + \sum_{n \geq 1} e^{-\pi n^2 \sin(\delta)}
\leq 1 + \int_{0}^{\infty} e^{-\pi u^2 \sin(\delta)} \, du
= 1 + \frac{1}{\sqrt{\pi \sin(\delta)}} \int_{0}^{\infty} e^{-u^2} \, dv
\ll \delta^{-1/2}.
$$

Finally, we suppose by contradiction that there are only finitely many zeros ρ of the zeta function with $\Re(\rho) = 1/2$. In particular, for C sufficiently large $A(t)$ does not change sign for $|t| \geq C$. Thus

$$
\int_{|t| \geq C} |A(t)|B(t) \, dt = \left| \int_{|t| \geq C} A(t)B(t) \, dt \right|.
$$

Since C is fixed at this point, we get

$$
\left| \int_{-\infty}^{\infty} A(t)B(t) \, dt \right| = \int_{-\infty}^{\infty} |A(t)|B(t) \, dt + O(1),
$$

where the implicit constant is independent of δ (it will depend on C). Since this equation contradicts our inequalities (5) and (6) for sufficiently small δ, we conclude that there must be infinitely many zeros ρ with $\Re(\rho) = 1/2$.

5