Math 680 Fall 2017
Primes in an Arithmetic Progression

In order to prove Dirichlet’s theorem on primes in an arithmetic progression, we need to look at characters and L-series.

Definition: Fix a modulus $m > 1$. A *Dirichlet character* modulo m is a totally multiplicative function χ that satisfies the two properties:

i) $\chi(a) = \chi(b)$ whenever $a \equiv b \pmod{m}$,

ii) $\chi(a) \neq 0$ if and only if a is relatively prime to m.

Such a character naturally associates to a unique function on the group $(\mathbb{Z}/m\mathbb{Z})^\times$, and vice-versa.

Example 1: For any modulus m, the *principal character* χ_0 is

$$
\chi_0(a) = \begin{cases}
1 & \text{if } a \text{ is relatively prime to } m, \\
0 & \text{otherwise}.
\end{cases}
$$

Example 2: For $m = 3$, set

$$
\chi_1(a) = \begin{cases}
1 & \text{if } a \equiv 1 \pmod{3}, \\
-1 & \text{if } a \equiv 2 \pmod{3}, \\
0 & \text{if } a \equiv 3 \pmod{3}.
\end{cases}
$$

Example 3: The above example is actually a particular case of a more generic situation. Set m to be a prime p. Choose a $(p - 1)^{th}$ root of unity ξ and a primitive root (modulo p) r. In other words, as an element of $(\mathbb{Z}/p\mathbb{Z})^\times$, r generates the entire cyclic group. We then have the character

$$
\chi(a) = \begin{cases}
\xi^n & \text{if } a \equiv r^n \pmod{p} \text{ for some } n, \\
0 & \text{if } a \equiv 0 \pmod{p}.
\end{cases}
$$

Given a Dirichlet character χ, we get the L-series

$$
L(s, \chi) := \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s}.
$$

This is a Dirichlet series with an Euler product by a previous Proposition/exercise:

$$
L(s, \chi) = \prod_{p \text{ prime}} \left(1 - \chi(p)p^{-s} \right)^{-1}.
$$

We need to determine some elementary properties of these L-series.
For the principal character, we have

\[
L(s, \chi_0) = \prod_{p \text{ prime}} \left(1 - \frac{\chi_0(p)}{p^s}\right)^{-1} = \prod_{p \text{ prime}} \left(1 - \frac{1}{p^s}\right)^{-1} = \prod_{p \text{ prime}, p \nmid m} \left(1 - \frac{1}{p^s}\right)^{-1} = \prod_{p \text{ prime}, p | m} \left(1 - \frac{1}{p^s}\right)^{-1} = \zeta(s) \prod_{p \text{ prime}} (1 - p^{-s}).
\]

Since the product on the right is finite, we clearly see that \(L(s, \chi_0)\) has the same abscissa of convergence as the zeta function. Further, it has a simple pole at \(s = 1\).

For other characters, we will need a bit more background.

Definition: A character on a finite abelian group \(G\) is a group homomorphism \(\chi: G \to \mathbb{C}^\times\). The set of all characters on \(G\) itself forms a group under point-wise multiplication; this group is called the dual of \(G\) and is denoted \(G^\perp\).

Note that Dirichlet characters are essentially group characters on \((\mathbb{Z}/m\mathbb{Z})^\times\). Also, the image of such a character must lie on the unit circle.

Proposition 1: For any finite abelian group \(G\) we have \(G \cong G^\perp\). Further,

\[
\sum_{g \in G} \chi(g) = \begin{cases} |G| & \text{if } \chi = \chi_0, \\ 0 & \text{otherwise}, \end{cases}
\]

and

\[
\sum_{\chi \in G^\perp} \chi(g) = \begin{cases} |G| & \text{if } g = e, \\ 0 & \text{otherwise}. \end{cases}
\]

Proof: Suppose first that \(G\) is cyclic with generator \(g\). Then any character \(\chi\) is completely determined by \(\chi(g)\). Since the order of the image must divide the order of the group, \(\chi(g)\) must be an \(m\)th root of unity, where \(m\) is the order of \(g\). Any such root of unity is possible here, and we thus see that \(\chi(g) = \exp(k2\pi i/m)\) for some \(k = 1, \ldots, m\). This shows that \(G^\perp \cong (\mathbb{Z}/m\mathbb{Z}) \cong G\).

In general, \(G\) is isomorphic to a direct product of cyclic groups: \(G \cong G_1 \times G_2 \times \cdots \times G_l\). One easily verifies that \(G^\perp \cong G_1^\perp \times G_2^\perp \times \cdots \times G_l^\perp\), since any \(\chi \in G^\perp\) is uniquely determined by its image on the generators of the various cyclic subgroups \(G_i\). Therefore the general case follows from the cyclic case.

We obviously have \(\sum_{g \in G} \chi_0(g) = |G|\), so suppose \(\chi \neq \chi_0\). Choose an \(h \in G\) such that \(\chi(h) \neq 1\). Then
as \(g \) runs through all elements of \(G \), so does \(hg \) and thus

\[
\sum_{g \in G} \chi(g) = \sum_{g \in G} \chi(hg) = \sum_{g \in G} \chi(h)\chi(g) = \chi(h) \sum_{g \in G} \chi(g).
\]

Since we are assuming that \(\chi(h) \neq 1 \), we must have \(\sum_{g \in G} \chi(g) = 0 \).

The same argument works for the dual sums. We clearly have \(\sum_{\chi \in G^\perp} \chi(e) = |G^\perp| = |G| \), so suppose that \(g \neq e \). Choose a \(\chi_1 \in G^\perp \) with \(\chi_1(g) \neq 1 \). This is possible since otherwise the dual of the cyclic subgroup generated by \(g \) is trivial, contradicting what we have already shown and the assumption that \(g \neq e \). As \(\chi \) runs through all elements of \(G^\perp \), so does \(\chi_1 \chi \) and thus

\[
\sum_{\chi \in G^\perp} \chi(g) = \sum_{\chi \in G^\perp} \chi_1(g)\chi(g) = \chi_1(g) \sum_{\chi \in G^\perp} \chi(g).
\]

Since \(\chi_1(g) \neq 1 \), we must have \(\sum_{\chi \in G^\perp} \chi(g) = 0 \).

Applying this proposition to the case where \(G = (\mathbb{Z}/m\mathbb{Z})^\times \), we see that for Dirichlet characters modulo \(m \)

\[
\sum_{1 \leq n \leq m, \gcd(n,m)=1} \chi(n) = \begin{cases}
\phi(m) & \text{if} \; \chi = \chi_0, \\
0 & \text{otherwise},
\end{cases}
\]

(2)

\[
\sum_{\chi} \chi(n) = \begin{cases}
\phi(m) & \text{if} \; n \equiv 1 \pmod{m}, \\
0 & \text{otherwise}.
\end{cases}
\]

(The second sum here is over all Dirichlet characters modulo \(m \).)

Proposition 2: Suppose \(\chi \) is a non-principal Dirichlet character modulo \(m \). Then \(L(s, \chi) \) has abscissa of convergence 0.

Proof: Set \(A(x) = \sum_{n \leq x} \chi(n) \). Since \(\chi \) is non-principal, (2) implies that \(|A(x)| \leq \phi(m) \) always. By Theorem 2 from the Dirichlet Series handout, this implies that \(\sigma_c \leq 0 \). On the other hand, we clearly see from (2) that \(\sum_{n \geq 1} \chi(n) \) diverges, so that \(\sigma_c \geq 0 \).

Theorem 1: Suppose \(m > 1 \) and for all non-principal Dirichlet characters \(\chi \) modulo \(m \) we have \(L(1, \chi) \neq 0 \). Then for all integers \(a \) relatively prime to \(m \) we have

\[
\sum_{n \geq 1 \atop n \equiv a \pmod{m}} \frac{\Lambda(n)}{n^\sigma} \to \infty
\]
as \(\sigma \to 1^+ \). In particular, there are infinitely many primes \(p \equiv a \pmod{m} \).
Proof: Fix an integer b such that $ab \equiv 1 \mod m$. Then for any Dirichlet character χ modulo m we have $\chi(a)\chi(b) = \chi(ab) = \chi(1) = 1 = \chi_0(a)$. Now by (2)

\[
\frac{1}{\phi(m)} \sum_{\chi} \chi(b)\chi(n) = \begin{cases} 1 & \text{if } bn \equiv 1 \mod m, \\ 0 & \text{otherwise}, \end{cases} = \begin{cases} 1 & \text{if } n \equiv a \mod m, \\ 0 & \text{otherwise}. \end{cases}
\]

Here the sum is over all Dirichlet characters modulo m.

Arguing exactly as in the proof of the Euler product for the zeta function, we have

\[
\frac{L'(s, \chi)}{L(s, \chi)} = -\sum_{n \geq 1} \frac{\Lambda(n)\chi(n)}{n^s},
\]

which is valid if $\Re(s) > 1$. Using this together with (3) yields

\[
\sum_{\chi} \frac{L'(s, \chi)}{L(s, \chi)} \chi(b) = -\sum_{\chi} \chi(b) \sum_{n \geq 1} \frac{\Lambda(n)\chi(n)}{n^s} = -\sum_{n \geq 1} \frac{\Lambda(n)}{n^s} \sum_{\chi} \chi(b)\chi(n) = -\phi(m) \sum_{n \equiv a \mod m} \frac{\Lambda(n)}{n^s}.
\]

Now by (1), $L'(s, \chi_0)/L(s, \chi_0)$ has a simple pole at $s = 1$ and $-L'(\sigma, \chi_0)/L(\sigma, \chi_0) \to \infty$ as $\sigma \to 1^+$. On the other hand, by Proposition 2 and the hypothesis that $L(1, \chi) \neq 0$ for all non-principal characters χ, we see that $L'(1, \chi)/L(1, \chi)$ exists for all non-principal characters. Since $\chi_0(b) = 1$, all of this together with (4) proves the first part of the theorem.

Finally, we note that

\[
\sum_{\substack{n=p^k \\
p \text{ prime} \\
k>1}} \frac{\Lambda(n)}{n} = \sum_{p \text{ prime}} \log p \sum_{k>1} \frac{1}{p^k} = \sum_{p \text{ prime}} \frac{\log p}{p(p-1)} < \sum_{n>1} \frac{\log n}{n(n-1)} < \infty.
\]

This together with the first part of the theorem shows that

\[
\sum_{\substack{p \text{ prime} \\
p \equiv a \mod m}} \frac{\Lambda(p)}{p^\sigma} \to \infty
\]
as $\sigma \to 1^+$. In particular, there are infinitely many primes $p \equiv a \mod m$.

Theorem 2: Suppose $m > 1$ and χ is a non-principal Dirichlet character modulo m. Then $L(1, \chi) \neq 0$.
Proof: Consider the product over all Dirichlet \(L \)-series modulo \(m \):

\[
P(s) := \prod_{\chi} L(s, \chi) = \prod_{\chi} \prod_{p \text{ prime}} (1 - \chi(p)p^{-s})^{-1}.
\]

This product converges when \(\Re(s) > 1 \), certainly. Assuming \(\Re(s) > 1 \), we have by (2)

\[
\log P(s) = -\sum_{\chi} \sum_{p \text{ prime}} \log (1 - \chi(p)p^{-s})
\]

\[
= \sum_{\chi} \sum_{p \text{ prime}} \sum_{k \geq 1} \frac{\chi(p)^k}{p^{skk}}
\]

\[
= \sum_{p \text{ prime}} \sum_{k \geq 1} \frac{1}{p^{skk}} \sum_{\chi} \chi(p^k)
\]

\[
= \sum_{p \text{ prime}} \sum_{k \geq 1} \frac{\phi(m)}{p^{skk}}.
\]

Set

\[
a(n) := \begin{cases}
\frac{\phi(m)}{k} & \text{if } n = p^k \equiv 1 \mod m \text{ for some prime } p, \\
0 & \text{otherwise}.
\end{cases}
\]

Then

\[D(s) := \log P(s) = \sum_{n \geq 1} \frac{a_n}{n^s} \]

is a Dirichlet series with \(\sigma_c \leq 1 \) and \(a_n \geq 0 \) for all \(n \). We need a positive lower bound for the abscissa of convergence.

Suppose \(p \) is a prime that doesn’t divide \(m \). Then by Euler’s extension of Fermat’s “little” theorem, \(p^{\phi(m)} \equiv 1 \mod m \). Now just using the \(k = \phi(m) \) term we have

\[
D(\sigma) = \sum_{n \geq 1} \frac{a_n}{n^s} = \sum_{k \geq 1} \sum_{p \text{ prime}} \frac{\phi(m)}{p^{skk}}
\]

\[
> \sum_{p \text{ prime}} \frac{1}{p^{\sigma \phi(m)}} > \sum_{p \text{ prime}} \frac{1}{p^{\sigma \phi(m)}} - \sum_{p \text{ prime}} \frac{1}{p^{\sigma \phi(m)}}.
\]

The second sum on the right is finite and depends only on \(m \) and \(\sigma \). However, we’ve seen that \(\sum_p \frac{\log p}{p} \) diverges. In particular, \(D(1/2\phi(m)) \) diverges so that \(\sigma_c \geq 1/2\phi(m) > 0 \). (In fact, using Chebyshev’s inequalities we see that \(\sum_p \frac{1}{p} \) diverges and that \(\sigma_c \geq 1/\phi(m) \). But that is of no consequence here; we simply need to demonstrate that the abscissa of convergence is strictly positive.)

We may write

\[
P(s) = 1 + \frac{D(s)}{1!} + \frac{D(s)^2}{2!} + \cdots + \frac{D(s)^n}{n!} + \cdots
\]
As above, $D(s)$ may be expressed as a Dirichlet series with abissa of convergence $\sigma_c \geq 1/2\phi(m)$ and all of the coefficients are non-negative. Thus any convergence along the real axis is absolute convergence. This implies that each $D(s)^n/n!$ may be expressed as a Dirichlet series with non-negative coefficients and the same abscissa of convergence. And now the same argument applies to $P(s)$ via the infinite series representation above. We therefore may conclude by Landau’s Theorem that $P(s)$ is not analytic on the right half-plane \(\{s = \sigma + it: \sigma > 0\} \).

To complete the proof, suppose by contradiction that some $L(1, \chi_1) = 0$. By (1), $L(s, \chi_0)$ is analytic on the right half-plane except for a simple pole at $s = 1$. Since all other L-series here are analytic on the entire right half-plane by Proposition 2, our simple pole at $s = 1$ from $L(s, \chi_0)$ is canceled out by the zero from the factor $L(1, \chi_1)$ in $P(s)$, implying that the product $P(s)$ of our L-series is analytic on the entire right half-plane.