Northern Illinois University, Math 681

April 7, 2021
The Strong Approximation Theorem

Recall the following, proven well before the Riemann-Roch Theorem.

Theorem (Weak Approximation Theorem)
Let K be a function field, let R_1, \ldots, R_n be distinct valuation rings of K, and denote the corresponding valuations by v_1, \ldots, v_n. Let $\alpha_1, \ldots, \alpha_n \in K$ and $z_1, \ldots, z_n \in \mathbb{Z}$. There is an $\alpha \in K$ with $v_i(\alpha - \alpha_i) = z_i$ for all $i = 1, \ldots, n$.

It's now time to improve upon that result.

Theorem (Strong Approximation Theorem)
Let K be a function field and $S \subseteq M(K)$ be a proper and non-empty subset of places of K. Let $v_1, \ldots, v_n \in S$ with corresponding $\alpha_1, \ldots, \alpha_n \in K$ and $z_1, \ldots, z_n \in \mathbb{Z}$. Then there is an $\alpha \in K$ such that $\text{ord}_{v_i}(\alpha - \alpha_i) = z_i$ for all $i = 1, \ldots, n$ and $\text{ord}_{v}(\alpha) \geq 0$ for all places $v \in S, v \neq v_1, \ldots, v_n$.

Recall the following, proven well before the Riemann-Roch Theorem.
The Strong Approximation Theorem

Recall the following, proven well before the Riemann-Roch Theorem.

Theorem (Weak Approximation Theorem)

Let K be a function field, let R_1, \ldots, R_n be distinct valuation rings of K, and denote the corresponding valuations by v_1, \ldots, v_n. Let $\alpha_1, \ldots, \alpha_n \in K$ and $z_1, \ldots, z_n \in \mathbb{Z}$. There is an $\alpha \in K$ with $v_i(\alpha - \alpha_i) = z_i$ for all $i = 1, \ldots, n$.

It's now time to improve upon that result.

Theorem (Strong Approximation Theorem)

Let K be a function field and $S \subset M(K)$ be a proper and non-empty subset of places of K. Let $v_1, \ldots, v_n \in S$ with corresponding $\alpha_1, \ldots, \alpha_n \in K$ and $z_1, \ldots, z_n \in \mathbb{Z}$. Then there is an $\alpha \in K$ such that $\text{ord}_{v_i}(\alpha - \alpha_i) = z_i$ for all $i = 1, \ldots, n$ and $\text{ord}_{v}(\alpha) \geq 0$ for all places $v \in S, v \neq v_1, \ldots, v_n$.
The Strong Approximation Theorem

Recall the following, proven well before the Riemann-Roch Theorem.

Theorem (Weak Approximation Theorem)

Let K be a function field,

Let K be a function field,

and denote the corresponding valuations by v_1, \ldots, v_n.

Let $\alpha_1, \ldots, \alpha_n \in K$ and $z_1, \ldots, z_n \in \mathbb{Z}$.

There is an $\alpha \in K$ with $v_i(\alpha - \alpha_i) = z_i$ for all $i = 1, \ldots, n$.

It's now time to improve upon that result.

Theorem (Strong Approximation Theorem)

Let K be a function field and $S \subset M(K)$ be a proper and non-empty subset of places of K.

Let $v_1, \ldots, v_n \in S$ with corresponding $\alpha_1, \ldots, \alpha_n \in K$ and $z_1, \ldots, z_n \in \mathbb{Z}$.

Then there is an $\alpha \in K$ such that $\text{ord}_{v_i}(\alpha - \alpha_i) = z_i$ for all $i = 1, \ldots, n$ and $\text{ord}_{v}(\alpha) \geq 0$ for all places $v \in S, v \neq v_1, \ldots, v_n$.
Recall the following, proven well before the Riemann-Roch Theorem.

Theorem (Weak Approximation Theorem)

Let K be a function field, let R_1, \ldots, R_n be distinct valuation rings of K, and denote the corresponding valuations by v_1, \ldots, v_n. Let $\alpha_1, \ldots, \alpha_n \in K$ and $z_1, \ldots, z_n \in \mathbb{Z}$. There is an $\alpha \in K$ with $v_i(\alpha - \alpha_i) = z_i$ for all $i = 1, \ldots, n$.

It's now time to improve upon that result.

Theorem (Strong Approximation Theorem)

Let K be a function field and $S \subseteq M(K)$ be a proper and non-empty subset of places of K. Let $v_1, \ldots, v_n \in S$ with corresponding $\alpha_1, \ldots, \alpha_n \in K$ and $z_1, \ldots, z_n \in \mathbb{Z}$. Then there is an $\alpha \in K$ such that $\text{ord}_{v_i}(\alpha - \alpha_i) = z_i$ for all $i = 1, \ldots, n$ and $\text{ord}_{v}(\alpha) \geq 0$ for all places $v \in S$, $v \neq v_1, \ldots, v_n$.
The Strong Approximation Theorem

Recall the following, proven well before the Riemann-Roch Theorem.

Theorem (Weak Approximation Theorem)

Let K be a function field, let R_1, \ldots, R_n be distinct valuation rings of K, and denote the corresponding valuations by v_1, \ldots, v_n. There is an $\alpha \in K$ with $v_i(\alpha - \alpha_i) = z_i$ for all $i = 1, \ldots, n$.

It's now time to improve upon that result.

Theorem (Strong Approximation Theorem)

Let K be a function field and $S \subseteq M(K)$ be a proper and non-empty subset of places of K. Let $v_1, \ldots, v_n \in S$ with corresponding $\alpha_1, \ldots, \alpha_n \in K$ and $z_1, \ldots, z_n \in \mathbb{Z}$. Then there is an $\alpha \in K$ such that $\text{ord } v_i(\alpha - \alpha_i) = z_i$ for all $i = 1, \ldots, n$ and $\text{ord } v(\alpha) \geq 0$ for all places $v \in S$, $v \neq v_1, \ldots, v_n$.
The Strong Approximation Theorem

Recall the following, proven well before the Riemann-Roch Theorem.

Theorem (Weak Approximation Theorem)

Let K be a function field, let R_1, \ldots, R_n be distinct valuation rings of K, and denote the corresponding valuations by v_1, \ldots, v_n. Let $\alpha_1, \ldots, \alpha_n \in K$ and $z_1, \ldots, z_n \in \mathbb{Z}$.
The Strong Approximation Theorem

Recall the following, proven well before the Riemann-Roch Theorem.

Theorem (Weak Approximation Theorem)

Let K be a function field, let R_1, \ldots, R_n be distinct valuation rings of K, and denote the corresponding valuations by v_1, \ldots, v_n. Let $\alpha_1, \ldots, \alpha_n \in K$ and $z_1, \ldots, z_n \in \mathbb{Z}$. There is an $\alpha \in K$ with $v_i(\alpha - \alpha_i) = z_i$ for all $i = 1, \ldots, n$.

It’s now time to improve upon that result.

Theorem (Strong Approximation Theorem)

Let K be a function field and $S \subseteq \mathcal{M}(K)$ be a proper and non-empty subset of places of K. Let $v_1, \ldots, v_n \in S$ with corresponding $\alpha_1, \ldots, \alpha_n \in K$ and $z_1, \ldots, z_n \in \mathbb{Z}$. Then there is an $\alpha \in K$ such that $\text{ord } v_i(\alpha - \alpha_i) = z_i$ for all $i = 1, \ldots, n$ and $\text{ord } v(\alpha) \geq 0$ for all places $v \notin S$, $v \neq v_1, \ldots, v_n$.
The Strong Approximation Theorem

Recall the following, proven well before the Riemann-Roch Theorem.

Theorem (Weak Approximation Theorem)

Let K be a function field, let R_1, \ldots, R_n be distinct valuation rings of K, and denote the corresponding valuations by v_1, \ldots, v_n. Let $\alpha_1, \ldots, \alpha_n \in K$ and $z_1, \ldots, z_n \in \mathbb{Z}$. There is an $\alpha \in K$ with $v_i(\alpha - \alpha_i) = z_i$ for all $i = 1, \ldots, n$.

It’s now time to improve upon that result.
The Strong Approximation Theorem

Recall the following, proven well before the Riemann-Roch Theorem.

Theorem (Weak Approximation Theorem)

Let K be a function field, let R_1, \ldots, R_n be distinct valuation rings of K, and denote the corresponding valuations by v_1, \ldots, v_n. Let $\alpha_1, \ldots, \alpha_n \in K$ and $z_1, \ldots, z_n \in \mathbb{Z}$. There is an $\alpha \in K$ with $v_i(\alpha - \alpha_i) = z_i$ for all $i = 1, \ldots, n$.

It’s now time to improve upon that result.

Theorem (Strong Approximation Theorem)
The Strong Approximation Theorem

Recall the following, proven well before the Riemann-Roch Theorem.

Theorem (Weak Approximation Theorem)

Let K be a function field, let R_1, \ldots, R_n be distinct valuation rings of K, and denote the corresponding valuations by v_1, \ldots, v_n. Let $\alpha_1, \ldots, \alpha_n \in K$ and $z_1, \ldots, z_n \in \mathbb{Z}$. There is an $\alpha \in K$ with $v_i(\alpha - \alpha_i) = z_i$ for all $i = 1, \ldots, n$.

It's now time to improve upon that result.

Theorem (Strong Approximation Theorem)

Let K be a function field and $S \subset M(K)$ be a proper and non-empty subset of places of K.
The Strong Approximation Theorem

Recall the following, proven well before the Riemann-Roch Theorem.

Theorem (Weak Approximation Theorem)

Let K be a function field, let R_1, \ldots, R_n be distinct valuation rings of K, and denote the corresponding valuations by v_1, \ldots, v_n. Let $\alpha_1, \ldots, \alpha_n \in K$ and $z_1, \ldots, z_n \in \mathbb{Z}$. There is an $\alpha \in K$ with $v_i(\alpha - \alpha_i) = z_i$ for all $i = 1, \ldots, n$.

It’s now time to improve upon that result.

Theorem (Strong Approximation Theorem)

Let K be a function field and $S \subsetneq M(K)$ be a proper and non-empty subset of places of K. Let $v_1, \ldots, v_n \in S$ with corresponding $\alpha_1, \ldots, \alpha_n \in K$ and $z_1, \ldots, z_n \in \mathbb{Z}$.
The Strong Approximation Theorem

Recall the following, proven well before the Riemann-Roch Theorem.

Theorem (Weak Approximation Theorem)

Let K be a function field, let R_1, \ldots, R_n be distinct valuation rings of K, and denote the corresponding valuations by v_1, \ldots, v_n. Let $\alpha_1, \ldots, \alpha_n \in K$ and $z_1, \ldots, z_n \in \mathbb{Z}$. There is an $\alpha \in K$ with $v_i(\alpha - \alpha_i) = z_i$ for all $i = 1, \ldots, n$.

It's now time to improve upon that result.

Theorem (Strong Approximation Theorem)

Let K be a function field and $S \subsetneq M(K)$ be a proper and non-empty subset of places of K. Let $v_1, \ldots, v_n \in S$ with corresponding $\alpha_1, \ldots, \alpha_n \in K$ and $z_1, \ldots, z_n \in \mathbb{Z}$. Then there is an $\alpha \in K$ such that $\text{ord}_{v_i}(\alpha - \alpha_i) = z_i$ for all $i = 1, \ldots, n$.
The Strong Approximation Theorem

Recall the following, proven well before the Riemann-Roch Theorem.

Theorem (Weak Approximation Theorem)

Let K be a function field, let R_1, \ldots, R_n be distinct valuation rings of K, and denote the corresponding valuations by v_1, \ldots, v_n. Let $\alpha_1, \ldots, \alpha_n \in K$ and $z_1, \ldots, z_n \in \mathbb{Z}$. There is an $\alpha \in K$ with $v_i(\alpha - \alpha_i) = z_i$ for all $i = 1, \ldots, n$.

It's now time to improve upon that result.

Theorem (Strong Approximation Theorem)

Let K be a function field and $S \subsetneq M(K)$ be a proper and non-empty subset of places of K. Let $v_1, \ldots, v_n \in S$ with corresponding $\alpha_1, \ldots, \alpha_n \in K$ and $z_1, \ldots, z_n \in \mathbb{Z}$. Then there is an $\alpha \in K$ such that $\operatorname{ord}_{v_i}(\alpha - \alpha_i) = z_i$ for all $i = 1, \ldots, n$ and $\operatorname{ord}_{v}(\alpha) \geq 0$ for all places $v \in S$, $v \neq v_1, \ldots, v_n$.
Proof: We first set an adele $(\alpha_v)_v \in K_{\mathbb{A}}$ as follows:
Proof: We first set an adele \((\alpha_v)_v \in K_A\) as follows:

\[
\alpha_v = \begin{cases}
\alpha_i & \text{if } v = v_i \text{ for some } i = 1, \ldots, n, \\
0 & \text{otherwise}.
\end{cases}
\]
Proof: We first set an adele $(\alpha_v)_v \in K_\mathbb{A}$ as follows:

$$\alpha_v = \begin{cases}
\alpha_i & \text{if } v = v_i \text{ for some } i = 1, \ldots, n, \\
0 & \text{otherwise.}
\end{cases}$$
Proof: We first set an adele \((\alpha_v)_v \in K_\mathbb{A}\) as follows:

\[
\alpha_v = \begin{cases}
\alpha_i & \text{if } v = v_i \text{ for some } i = 1, \ldots, n, \\
0 & \text{otherwise.}
\end{cases}
\]

Next, chose a place \(v_0\) in the complement of \(S\).
Proof: We first set an adele \((\alpha_v)_v \in K_\mathbb{A}\) as follows:

\[
\alpha_v = \begin{cases}
\alpha_i & \text{if } v = v_i \text{ for some } i = 1, \ldots, n, \\
0 & \text{otherwise}.
\end{cases}
\]

Next, chose a place \(v_0\) in the complement of \(S\) (possible since \(S\) is a proper subset of places).
Proof: We first set an adele \((\alpha_v)_v \in K_\mathbb{A}\) as follows:

\[
\alpha_v = \begin{cases}
\alpha_i & \text{if } v = v_i \text{ for some } i = 1, \ldots, n, \\
0 & \text{otherwise.}
\end{cases}
\]

Next, choose a place \(v_0\) in the complement of \(S\) (possible since \(S\) is a proper subset of places).

For any divisor \(\mathfrak{A} \in \text{Div}(K)\), we showed in the proof of the Riemann-Roch Theorem that
Proof: We first set an adele \((\alpha_v)_v \in K_\mathbb{A}\) as follows:

\[
\alpha_v = \begin{cases}
\alpha_i & \text{if } v = v_i \text{ for some } i = 1, \ldots, n, \\
0 & \text{otherwise.}
\end{cases}
\]

Next, chose a place \(v_0\) in the complement of \(S\) (possible since \(S\) is a proper subset of places).

For any divisor \(A \in \text{Div}(K)\), we showed in the proof of the Riemann-Roch Theorem that

\[
\l(W - A) = \dim_{\mathbb{F}_q} \left(\frac{K_\mathbb{A}}{\Lambda(A) + K} \right),
\]

where \(A\) is an idele corresponding to \(A\) and \(\deg(A) \geq 2g - 1\). We see that

\[
K_\mathbb{A} = \Lambda(A) + K
\]

for all ideles \(A\) with corresponding divisor \(A\) of degree at least \(2g - 1\).

With the above in mind, we certainly can say that for sufficiently large \(m \in \mathbb{Z}\), the divisor \(A = m \cdot v_0 - \sum_{i=1}^n (z_i + 1) \cdot v_i\) has a corresponding idele \(A\) such that \(K_\mathbb{A} = \Lambda(A) + K\).
Proof: We first set an adele \((\alpha_v)_v \in K_{\mathbb{A}}\) as follows:

\[
\alpha_v = \begin{cases}
\alpha_i & \text{if } v = v_i \text{ for some } i = 1, \ldots, n, \\
0 & \text{otherwise.}
\end{cases}
\]

Next, chose a place \(v_0\) in the complement of \(S\) (possible since \(S\) is a proper subset of places).

For any divisor \(\mathfrak{A} \in \text{Div}(K)\), we showed in the proof of the Riemann-Roch Theorem that

\[
\text{deg}(\mathfrak{A}) \geq 2g - 1,
\]

where \(\mathfrak{A} \in K_{\mathbb{A}}^{\times}\) is an idele corresponding to \(\mathfrak{A}\).
Proof: We first set an adele \((\alpha_v)_v \in K_A\) as follows:

\[
\alpha_v = \begin{cases}
\alpha_i & \text{if } v = v_i \text{ for some } i = 1, \ldots, n, \\
0 & \text{otherwise.}
\end{cases}
\]

Next, chose a place \(v_0\) in the complement of \(S\) (possible since \(S\) is a proper subset of places).

For any divisor \(A \in \text{Div}(K)\), we showed in the proof of the Riemann-Roch Theorem that

\[
I(\omega - A) = \dim_{\mathbb{F}_q} \left(\frac{K_A}{\Lambda(A) + K} \right),
\]

where \(A \in K_A^\times\) is an idele corresponding to \(A\). In particular, since

\[
I(\omega - A) = 0 \text{ for all divisors } A \text{ with } \deg(A) \geq 2g - 1,
\]
Proof: We first set an adele \((\alpha_v)_v \in K_{\mathcal{A}}\) as follows:

\[
\alpha_v = \begin{cases}
\alpha_i & \text{if } v = v_i \text{ for some } i = 1, \ldots, n, \\
0 & \text{otherwise}.
\end{cases}
\]

Next, choose a place \(v_0\) in the complement of \(S\) (possible since \(S\) is a proper subset of places).

For any divisor \(\mathfrak{A} \in \text{Div}(K)\), we showed in the proof of the Riemann-Roch Theorem that

\[
\ell(\mathcal{W} - \mathfrak{A}) = \dim_{\mathbb{F}_q} \left(\frac{K_{\mathcal{A}}}{\Lambda(A) + K} \right),
\]

where \(A \in K_{\mathcal{A}}^\times\) is an idele corresponding to \(\mathfrak{A}\). In particular, since \(\ell(\mathcal{W} - \mathfrak{A}) = 0\) for all divisors \(\mathfrak{A}\) with \(\deg(\mathfrak{A}) \geq 2g - 1\), we see that

\[
K_{\mathcal{A}} = \Lambda(A) + K
\]

for all ideles \(A\) with corresponding divisor \(\mathfrak{A}\) of degree at least \(2g - 1\).
Proof: We first set an adele \((\alpha_v)_v \in K_A\) as follows:

\[
\alpha_v = \begin{cases}
\alpha_i & \text{if } v = v_i \text{ for some } i = 1, \ldots, n, \\
0 & \text{otherwise.}
\end{cases}
\]

Next, chose a place \(v_0\) in the complement of \(S\) (possible since \(S\) is a proper subset of places).

For any divisor \(\mathcal{A} \in \text{Div}(K)\), we showed in the proof of the Riemann-Roch Theorem that

\[
l(\mathcal{W} - \mathcal{A}) = \dim_{\mathbb{F}_q} \left(\frac{K_A}{\Lambda(A) + K} \right),
\]

where \(A \in K_A^\times\) is an idele corresponding to \(\mathcal{A}\). In particular, since

\[
l(\mathcal{W} - \mathcal{A}) = 0 \text{ for all divisors } \mathcal{A} \text{ with } \deg(\mathcal{A}) \geq 2g - 1,
\]

we see that

\[
K_A = \Lambda(A) + K
\]

for all ideles \(A\) with corresponding divisor \(\mathcal{A}\) of degree at least \(2g - 1\).

With the above in mind, we certainly can say that for sufficiently large \(m \in \mathbb{Z}\),

Math 681, Wednesday, April 7
Proof: We first set an adele \((\alpha_v)_v \in K_\mathbb{A}\) as follows:

\[
\alpha_v = \begin{cases}
\alpha_i & \text{if } v = v_i \text{ for some } i = 1, \ldots, n, \\
0 & \text{otherwise.}
\end{cases}
\]

Next, chose a place \(v_0\) in the complement of \(S\) (possible since \(S\) is a proper subset of places).

For any divisor \(\mathfrak{A} \in \text{Div}(K)\), we showed in the proof of the Riemann-Roch Theorem that

\[
l(\mathfrak{M} - \mathfrak{A}) = \dim_{\mathbb{F}_q} \left(\frac{K_\mathbb{A}}{\Lambda(A) + K} \right),
\]

where \(A \in K_\mathbb{A}^\times\) is an idele corresponding to \(\mathfrak{A}\). In particular, since \(l(\mathfrak{M} - \mathfrak{A}) = 0\) for all divisors \(\mathfrak{A}\) with \(\deg(\mathfrak{A}) \geq 2g - 1\), we see that

\[
K_\mathbb{A} = \Lambda(A) + K
\]

for all ideles \(A\) with corresponding divisor \(\mathfrak{A}\) of degree at least \(2g - 1\).

With the above in mind, we certainly can say that for sufficiently large \(m \in \mathbb{Z}\), the divisor \(\mathfrak{A} = m \cdot v_0 - \sum_{i=1}^n (z_i + 1) \cdot v_i\) has a corresponding idele \(A\) such that \(K_\mathbb{A} = \Lambda(A) + K\).
Fix such an \(m \) and divisor \(\mathcal{A} \);
Fix such an m and divisor \mathfrak{M}; then there is a $\beta \in K$ such that $\beta - (\alpha_v)_v \in \Lambda(A)$.
Fix such an \(m \) and divisor \(\mathcal{A} \); then there is a \(\beta \in K \) such that \(\beta - (\alpha_v)_v \in \Lambda(A) \). This implies that

\[
\text{ord}_{v_i}(\beta - \alpha_i) > z_i \quad i = 1, \ldots, n
\]
Fix such an m and divisor \mathfrak{M}; then there is a $\beta \in K$ such that $\beta - (\alpha_v)_v \in \Lambda(A)$. This implies that

$$\text{ord}_{v_i}(\beta - \alpha_i) > z_i \quad i = 1, \ldots, n$$

$$\text{ord}_v(\beta) \geq 0 \quad v \in S, \quad v \neq v_1, \ldots, v_n.$$
Fix such an m and divisor \mathfrak{A}; then there is a $\beta \in K$ such that $\beta - (\alpha_\nu)_\nu \in \Lambda(A)$. This implies that

$$\text{ord}_{\nu_i}(\beta - \alpha_i) > z_i \quad i = 1, \ldots, n$$

$$\text{ord}_\nu(\beta) \geq 0 \quad \nu \in S, \quad \nu \neq \nu_1, \ldots, \nu_n.$$

Now choose $\beta_i \in K$ such that $\text{ord}_{\nu_i}(\beta_i) = z_i$ for $i = 1, \ldots, n$.
Fix such an \(m \) and divisor \(\mathcal{A} \); then there is a \(\beta \in K \) such that
\[\beta - (\alpha_v)_v \in \Lambda(A). \]
This implies that
\[
\text{ord}_{v_i}(\beta - \alpha_i) > z_i \quad i = 1, \ldots, n \\
\text{ord}_v(\beta) \geq 0 \quad \forall v \in S, \quad v \neq v_1, \ldots, v_n.
\]

Now choose \(\beta_i \in K \) such that \(\text{ord}_{v_i}(\beta_i) = z_i \) for \(i = 1, \ldots, n \) and repeat
the same argument above to get a \(\gamma \in K \) with
Fix such an \(m \) and divisor \(\mathcal{A} \); then there is a \(\beta \in K \) such that \(\beta - (\alpha_v)_v \in \Lambda(A) \). This implies that

\[
\text{ord}_v(\beta - \alpha_i) > z_i \quad i = 1, \ldots, n
\]
\[
\text{ord}_v(\beta) \geq 0 \quad v \in S, \quad v \neq v_1, \ldots, v_n.
\]

Now choose \(\beta_i \in K \) such that \(\text{ord}_v(\beta_i) = z_i \) for \(i = 1, \ldots, n \) and repeat the same argument above to get a \(\gamma \in K \) with

\[
\text{ord}_v(\gamma - \beta_i) > z_i \quad i = 1, \ldots, n
\]
Fix such an m and divisor \mathfrak{A}; then there is a $\beta \in K$ such that $\beta - (\alpha_v)_v \in \Lambda(A)$. This implies that

\[
\text{ord}_{v_i}(\beta - \alpha_i) > z_i \quad i = 1, \ldots, n \\
\text{ord}_v(\beta) \geq 0 \quad v \in S, \quad v \neq v_1, \ldots, v_n.
\]

Now choose $\beta_i \in K$ such that $\text{ord}_{v_i}(\beta_i) = z_i$ for $i = 1, \ldots, n$ and repeat the same argument above to get a $\gamma \in K$ with

\[
\text{ord}_{v_i}(\gamma - \beta_i) > z_i \quad i = 1, \ldots, n \\
\text{ord}_v(\gamma) \geq 0 \quad v \in S, \quad v \neq v_1, \ldots, v_n.
\]
Notice that

\[\text{ord}_{v_i}(\gamma) = \text{ord}_{v_i}(\gamma - \beta_i + \beta_i) = \text{ord}_{v_i}(\beta_i) = z_i \]

for all \(i = 1, \ldots, n \) by the strict triangle inequality and construction.
Notice that

$$\text{ord}_{v_i}(\gamma) = \text{ord}_{v_i}(\gamma - \beta_i + \beta_i) = \text{ord}_{v_i}(\beta_i) = z_i$$

for all $i = 1, \ldots, n$ by the strict triangle inequality and construction.

Set $\alpha = \beta + \gamma$.
Notice that

\[\text{ord}_{v_i}(\gamma) = \text{ord}_{v_i}(\gamma - \beta_i + \beta_i) = \text{ord}_{v_i}(\beta_i) = z_i \]

for all \(i = 1, \ldots, n \) by the strict triangle inequality and construction.

Set \(\alpha = \beta + \gamma \). Then exactly as above we see that

\[\text{ord}_{v_i}(\alpha - \alpha_i) = \text{ord}_{v_i}(\beta - \alpha_i + \gamma) = \text{ord}_{v_i}(\gamma) = z_i \]
Notice that
\[\text{ord}_{v_i}(\gamma) = \text{ord}_{v_i}(\gamma - \beta_i + \beta_i) = \text{ord}_{v_i}(\beta_i) = z_i \]
for all \(i = 1, \ldots, n \) by the strict triangle inequality and construction.

Set \(\alpha = \beta + \gamma \). Then exactly as above we see that
\[\text{ord}_{v_i}(\alpha - \alpha_i) = \text{ord}_{v_i}(\beta - \alpha_i + \gamma) = \text{ord}_{v_i}(\gamma) = z_i \]
for all \(i = 1, \ldots, n \) by the strict triangle inequality and construction.
Notice that

$$\text{ord}_{v_i}(\gamma) = \text{ord}_{v_i}(\gamma - \beta_i + \beta_i) = \text{ord}_{v_i}(\beta_i) = z_i$$

for all $i = 1, \ldots, n$ by the strict triangle inequality and construction.

Set $\alpha = \beta + \gamma$. Then exactly as above we see that

$$\text{ord}_{v_i}(\alpha - \alpha_i) = \text{ord}_{v_i}(\beta - \alpha_i + \gamma) = \text{ord}_{v_i}(\gamma) = z_i$$

for all $i = 1, \ldots, n$ by the strict triangle inequality and construction. We also have

$$\text{ord}_v(\alpha) = \text{ord}_v(\beta + \gamma) \geq \min\{\text{ord}_v(\beta), \text{ord}_v(\gamma)\} \geq 0$$

for all places $v \in S, v \neq v_1, \ldots, v_n$ by construction.