Recall that if \(R \) is a subring of a field \(K \), either a number field or a function field, then an element \(\alpha \in K \) is called integral over \(R \) if \(\alpha \) is a root of some non-zero monic polynomial in \(R[X] \).

The integral closure of \(R \) in \(K \) is the set of all elements of \(K \) that are integral over \(R \).

We've seen that this is a subring of \(K \).

The ring \(R \) is called integrally closed in its quotient field \(K_0 \subseteq K \) if all elements of \(K_0 \) integral over \(R \) are actually elements of \(R \).

An example here would be \(\mathcal{O}_K \subseteq K \).
Recall that if R is a subring of a field K, the \textbf{integral closure} of R in K is the set of all elements of K that are integral over R. We've seen that this is a subring of K. The ring R is called \textbf{integrally closed} in its quotient field $K_0 \subseteq K$ if all elements of K_0 integral over R are actually elements of R. An example here would be $O_K \subset K$.
Recall that if \(R \) is a subring of a field \(K \), either a number field or a function field,
Recall that if R is a subring of a field K, either a number field or a function field, then an element $\alpha \in K$ is called integral over R if
Recall that if R is a subring of a field K, either a number field or a function field, then an element $\alpha \in K$ is called integral over R if α is a root of some non-zero monic polynomial in $R[X]$. The integral closure of R in K is the set of all elements of K that are integral over R. We've seen that this is a subring of K. The ring R is called integrally closed in its quotient field $K_0 \subseteq K$ if all elements of K_0 integral over R are actually elements of R. An example here would be $\mathcal{O}_K \subset K$.

\[\text{} \]
Recall that if R is a subring of a field K, either a number field or a function field, then an element $\alpha \in K$ is called \textit{integral over} R if α is a root of some non-zero monic polynomial in $R[X]$. The \textit{integral closure} of R in K is the set of all elements of K that are integral over R.
Recall that if R is a subring of a field K, either a number field or a function field, then an element $\alpha \in K$ is called integral over R if α is a root of some non-zero monic polynomial in $R[X]$. The integral closure of R in K is the set of all elements of K that are integral over R. We’ve seen that this is a subring of K.

Recall that if R is a subring of a field K, either a number field or a function field, then an element $\alpha \in K$ is called \textit{integral over} R if α is a root of some non-zero monic polynomial in $R[X]$. The \textit{integral closure} of R in K is the set of all elements of K that are integral over R.

We’ve seen that this is a subring of K.

The ring R is called \textit{integrally closed} in its quotient field $K_0 \subseteq K$ if
Recall that if R is a subring of a field K, either a number field or a function field, then an element $\alpha \in K$ is called integral over R if α is a root of some non-zero monic polynomial in $R[X]$. The integral closure of R in K is the set of all elements of K that are integral over R. We’ve seen that this is a subring of K. The ring R is called integrally closed in its quotient field $K_0 \subseteq K$ if all elements of K_0 integral over R are actually elements of R.
Recall that if R is a subring of a field K, either a number field or a function field, then an element $\alpha \in K$ is called integral over R if α is a root of some non-zero monic polynomial in $R[X]$. The integral closure of R in K is the set of all elements of K that are integral over R. We’ve seen that this is a subring of K. The ring R is called integrally closed in its quotient field $K_0 \subseteq K$ if all elements of K_0 integral over R are actually elements of R. An example here would be $\mathcal{O}_K \subseteq K$.
Definition

Let $S \subseteq M(K)$ be a proper non-empty set of places contained in the set of all non-archimedian places of K. The S-integers of K is the subring $O_S = \{ \alpha \in K : |\alpha|_v \leq 1 \text{ all } v \in S \} = \bigcap_{v \in S} R_v$, where R_v is the valuation ring associated with v, as usual, and $|\cdot|_v$ is any absolute value in the place v.

Examples:
1. Suppose K is a number field and S is the set of all non-archimedean places. Then $O_S = O_K$, the usual ring of algebraic integers of K.
2. Suppose $K = \mathbb{F}_q(X)$ is a field of rational functions and S consists of all places except the place corresponding to taking the degree. Then $O_S = \mathbb{F}_q[X]$ is the ring of polynomials in X.

Math 681, Wednesday, April 7

April 9, 2021
Definition

Let $S \subset M(K)$ be a proper non-empty set of places contained in the set of all non-archimedian places of K.

<table>
<thead>
<tr>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Suppose K is a number field and S is the set of all non-archimedean places. Then $O_S = O_K$, the usual ring of algebraic integers of K.</td>
</tr>
<tr>
<td>2. Suppose $K = \mathbb{F}_q(X)$ is a field of rational functions and S consists of all places except the place corresponding to taking the degree. Then $O_S = \mathbb{F}_q[X]$ is the ring of polynomials in X.</td>
</tr>
</tbody>
</table>
Definition

Let $S \subsetneq M(K)$ be a proper non-empty set of places contained in the set of all non-archimedian places of K. The S-integers of K is the subring

$$\mathcal{O}_S = \{ \alpha \in K : |\alpha|_v \leq 1 \text{ all } v \in S \} = \bigcap_{v \in S} R_v,$$
Definition

Let \(S \subsetneq M(K) \) be a proper non-empty set of places contained in the set of all non-archimedian places of \(K \). The \(S \)-integers of \(K \) is the subring

\[
\mathcal{O}_S = \{ \alpha \in K : |\alpha|_v \leq 1 \text{ all } v \in S \} = \bigcap_{v \in S} R_v,
\]

where \(R_v \) is the valuation ring associated with \(v \), as usual,
Definition

Let $S \subsetneq M(K)$ be a proper non-empty set of places contained in the set of all non-archimedian places of K. The S-integers of K is the subring

$$\mathcal{O}_S = \{\alpha \in K : |\alpha|_v \leq 1 \text{ all } v \in S\} = \bigcap_{v \in S} R_v,$$

where R_v is the valuation ring associated with v, as usual, and $|\cdot|_v$ is any absolute value in the place v.

Examples:

1. Suppose K is a number field and S is the set of all non-archimedean places. Then $\mathcal{O}_S = \mathcal{O}_K$, the usual ring of algebraic integers of K.

2. Suppose $K = \mathbb{F}_q(X)$ is a field of rational functions and S consists of all places except the place corresponding to taking the degree. Then $\mathcal{O}_S = \mathbb{F}_q[X]$ is the ring of polynomials in X.

Definition

Let $S \subset M(K)$ be a proper non-empty set of places contained in the set of all non-archimedian places of K. The S-integers of K is the subring

$$\mathcal{O}_S = \{ \alpha \in K : |\alpha|_v \leq 1 \text{ all } v \in S \} = \bigcap_{v \in S} R_v,$$

where R_v is the valuation ring associated with v, as usual, and $|\cdot|_v$ is any absolute value in the place v.

Examples:
Definition

Let \(S \subsetneq M(K) \) be a proper non-empty set of places contained in the set of all non-archimedian places of \(K \). The \(S \)-integers of \(K \) is the subring

\[
\mathcal{O}_S = \{ \alpha \in K : |\alpha|_v \leq 1 \text{ all } v \in S \} = \bigcap_{v \in S} R_v,
\]

where \(R_v \) is the valuation ring associated with \(v \), as usual, and \(|\cdot|_v \) is any absolute value in the place \(v \).

Examples: 1. Suppose \(K \) is a number field and \(S \) is the set of all non-archimedean places.
Definition

Let $S \subsetneq M(K)$ be a proper non-empty set of places contained in the set of all non-archimedean places of K. The S-integers of K is the subring

$$\mathcal{O}_S = \{ \alpha \in K : |\alpha|_v \leq 1 \text{ all } v \in S \} = \bigcap_{v \in S} R_v,$$

where R_v is the valuation ring associated with v, as usual, and $|\cdot|_v$ is any absolute value in the place v.

Examples: 1. Suppose K is a number field and S is the set of all non-archimedean places. Then $\mathcal{O}_S = \mathcal{O}_K$, the usual ring of algebraic integers of K.

Definition

Let $S \subset M(K)$ be a proper non-empty set of places contained in the set of all non-archimedean places of K. The S-integers of K is the subring

$$\mathfrak{O}_S = \{ \alpha \in K : |\alpha|_v \leq 1 \text{ all } v \in S \} = \bigcap_{v \in S} R_v,$$

where R_v is the valuation ring associated with v, as usual, and $|\cdot|_v$ is any absolute value in the place v.

Examples: 1. Suppose K is a number field and S is the set of all non-archimedean places. Then $\mathfrak{O}_S = \mathfrak{O}_K$, the usual ring of algebraic integers of K.
2. Suppose $K = \mathbb{F}_q(X)$ is a field of rational functions
Definition

Let $S \subset M(K)$ be a proper non-empty set of places contained in the set of all non-archimedian places of K. The S-integers of K is the subring

$$\mathcal{O}_S = \{ \alpha \in K : |\alpha|_v \leq 1 \text{ all } v \in S \} = \bigcap_{v \in S} R_v,$$

where R_v is the valuation ring associated with v, as usual, and $|\cdot|_v$ is any absolute value in the place v.

Examples: 1. Suppose K is a number field and S is the set of all non-archimedean places. Then $\mathcal{O}_S = \mathcal{O}_K$, the usual ring of algebraic integers of K.

2. Suppose $K = \mathbb{F}_q(X)$ is a field of rational functions and S consists of all places except the place corresponding to taking the degree.
Definition

Let \(S \subset M(K) \) be a proper non-empty set of places contained in the set of all non-archimedean places of \(K \). The **\(S \)-integers** of \(K \) is the subring

\[
\mathfrak{O}_S = \{ \alpha \in K : |\alpha|_v \leq 1 \text{ all } v \in S \} = \bigcap_{v \in S} R_v,
\]

where \(R_v \) is the valuation ring associated with \(v \), as usual, and \(|\cdot|_v \) is any absolute value in the place \(v \).

Examples: 1. Suppose \(K \) is a number field and \(S \) is the set of all non-archimedean places. Then \(\mathfrak{O}_S = \mathfrak{O}_K \), the usual ring of algebraic integers of \(K \).
2. Suppose \(K = \mathbb{F}_q(X) \) is a field of rational functions and \(S \) consists of all places except the place corresponding to taking the degree. Then \(\mathfrak{O}_S = \mathbb{F}_q[X] \) is the ring of polynomials in \(X \).
Lemma (1)

The quotient field of the ring of S-integers is all of K and O_S is integrally closed.

Proof:
Clearly $O_S \supseteq O_K$ in the number field case, so that the quotient field of O_S is the quotient field of O_K, which is K.

In the function field case, an application of the Strong Approximation Theorem shows that for all non-zero $\alpha \in K$ there is a $\beta \in K$ with $\operatorname{ord}_v(\beta) \geq \max\{0, \operatorname{ord}_v(\alpha - 1)\}$, $v \in S$.

Notice that $\beta \in O_S$, as is $\alpha \beta$, so that α is in the quotient field of O_S.

Now suppose $\alpha \in K$ is integral over O_S and write $\alpha^n + \beta^n - 1 \alpha^{n-1} + \cdots + \beta_1 \alpha + \beta_0 = 0$, where the β_i's are all in O_S.

If $\operatorname{ord}_v(\alpha) < 0$ for some place $v \in S$, then $\operatorname{ord}_v(\alpha^n) = n \operatorname{ord}_v(\alpha) < \min\{0, \operatorname{ord}_v(\alpha - 1)\}$ for all $i = 0, \ldots, n-1$.

But this can't happen by the ultra-metric inequality!

Therefore $\alpha \in O_S$.

Lemma (1)

The quotient field of the ring of S-integers is all of K
Lemma (1)

The quotient field of the ring of S-integers is all of K and \mathcal{O}_S is integrally closed.

Proof:

Clearly $\mathcal{O}_S \supseteq \mathcal{O}_K$ in the number field case, so that the quotient field of \mathcal{O}_S is the quotient field of \mathcal{O}_K, which is K.

In the function field case, an application of the Strong Approximation Theorem shows that for all non-zero $\alpha \in K$ there is a $\beta \in K$ with $\text{ord}_v(\beta) \geq \max\{0, \text{ord}_v(\alpha - 1)\}$, $v \in S$.

Notice that $\beta \in \mathcal{O}_S$, as is $\alpha \beta$, so that α is in the quotient field of \mathcal{O}_S.

Now suppose $\alpha \in K$ is integral over \mathcal{O}_S and write $\alpha n + \beta n - 1\alpha n - 1 + \cdots + \beta 1\alpha + \beta 0 = 0$, where the β_i's are all in \mathcal{O}_S.

If $\text{ord}_v(\alpha) < 0$ for some place $v \in S$, then $\text{ord}_v(\alpha n) = n\text{ord}_v(\alpha) < i\text{ord}_v(\beta_i\alpha^i) \leq \text{ord}_v(\beta_i\alpha^i)$ for all $i = 0, \ldots, n - 1$.

But this can't happen by the ultra-metric inequality!

Therefore $\alpha \in \mathcal{O}_S$.
Lemma (1)

The quotient field of the ring of S-integers is all of K and \mathfrak{D}_S is integrally closed.

Proof:
Lemma (1)

The quotient field of the ring of S-integers is all of K and \mathcal{O}_S is integrally closed.

Proof: Clearly $\mathcal{O}_S \supseteq \mathcal{O}_K$ in the number field case,
Lemma (1)

The quotient field of the ring of S-integers is all of K and \mathcal{O}_S is integrally closed.

Proof: Clearly $\mathcal{O}_S \supseteq \mathcal{O}_K$ in the number field case, so that the quotient field of \mathcal{O}_S is the quotient field of \mathcal{O}_K,
Lemma (1)

The quotient field of the ring of S-integers is all of K and \mathcal{O}_S is integrally closed.

Proof: Clearly $\mathcal{O}_S \supseteq \mathcal{O}_K$ in the number field case, so that the quotient field of \mathcal{O}_S is the quotient field of \mathcal{O}_K, which is K.
Lemma (1)

The quotient field of the ring of S-integers is all of K and \mathcal{O}_S is integrally closed.

Proof: Clearly $\mathcal{O}_S \supseteq \mathcal{O}_K$ in the number field case, so that the quotient field of \mathcal{O}_S is the quotient field of \mathcal{O}_K, which is K. In the function field case, an application of the Strong Approximation Theorem
Lemma (1)

The quotient field of the ring of S-integers is all of K and \mathfrak{O}_S is integrally closed.

Proof: Clearly $\mathfrak{O}_S \supseteq \mathfrak{O}_K$ in the number field case, so that the quotient field of \mathfrak{O}_S is the quotient field of \mathfrak{O}_K, which is K.

In the function field case, an application of the Strong Approximation Theorem shows that for all non-zero $\alpha \in K$ there is a $\beta \in K$ with
Lemma (1)

The quotient field of the ring of S-integers is all of K and \mathcal{O}_S is integrally closed.

Proof: Clearly $\mathcal{O}_S \supseteq \mathcal{O}_K$ in the number field case, so that the quotient field of \mathcal{O}_S is the quotient field of \mathcal{O}_K, which is K.

In the function field case, an application of the Strong Approximation Theorem shows that for all non-zero $\alpha \in K$ there is a $\beta \in K$ with

$$\text{ord}_v(\beta) \geq \max\{0, \text{ord}_v(\alpha^{-1})\}, \quad v \in S.$$
Lemma (1)

The quotient field of the ring of S-integers is all of K and \mathfrak{O}_S is integrally closed.

Proof: Clearly $\mathfrak{O}_S \supseteq \mathfrak{O}_K$ in the number field case, so that the quotient field of \mathfrak{O}_S is the quotient field of \mathfrak{O}_K, which is K.

In the function field case, an application of the Strong Approximation Theorem shows that for all non-zero $\alpha \in K$ there is a $\beta \in K$ with

$$\text{ord}_v(\beta) \geq \max\{0, \text{ord}_v(\alpha^{-1})\}, \quad v \in S.$$

Notice that $\beta \in \mathfrak{O}_S$, ...
Lemma (1)

The quotient field of the ring of S-integers is all of K and \mathcal{O}_S is integrally closed.

Proof: Clearly $\mathcal{O}_S \supseteq \mathcal{O}_K$ in the number field case, so that the quotient field of \mathcal{O}_S is the quotient field of \mathcal{O}_K, which is K.

In the function field case, an application of the Strong Approximation Theorem shows that for all non-zero $\alpha \in K$ there is a $\beta \in K$ with

$$\text{ord}_v(\beta) \geq \max\{0, \text{ord}_v(\alpha^{-1})\}, \quad v \in S.$$

Notice that $\beta \in \mathcal{O}_S$, as is $\alpha \beta$,

Lemma (1)

The quotient field of the ring of S-integers is all of K and \mathcal{O}_S is integrally closed.

Proof: Clearly $\mathcal{O}_S \supseteq \mathcal{O}_K$ in the number field case, so that the quotient field of \mathcal{O}_S is the quotient field of \mathcal{O}_K, which is K.

In the function field case, an application of the Strong Approximation Theorem shows that for all non-zero $\alpha \in K$ there is a $\beta \in K$ with

$$\text{ord}_v(\beta) \geq \max\{0, \text{ord}_v(\alpha^{-1})\}, \quad v \in S.$$

Notice that $\beta \in \mathcal{O}_S$, as is $\alpha \beta$, so that α is in the quotient field of \mathcal{O}_S.
Lemma (1)

The quotient field of the ring of S-integers is all of K and \mathcal{O}_S is integrally closed.

Proof: Clearly $\mathcal{O}_S \supseteq \mathcal{O}_K$ in the number field case, so that the quotient field of \mathcal{O}_S is the quotient field of \mathcal{O}_K, which is K.

In the function field case, an application of the Strong Approximation Theorem shows that for all non-zero $\alpha \in K$ there is a $\beta \in K$ with

$$\operatorname{ord}_v(\beta) \geq \max\{0, \operatorname{ord}_v(\alpha^{-1})\}, \quad v \in S.$$

Notice that $\beta \in \mathcal{O}_S$, as is $\alpha \beta$, so that α is in the quotient field of \mathcal{O}_S.

Now suppose $\alpha \in K$ is integral over \mathcal{O}_S and write

$$\alpha^n + \beta_{n-1}\alpha^{n-1} + \cdots + \beta_1\alpha + \beta_0 = 0,$$
Lemma (1)

The quotient field of the ring of S-integers is all of K and \mathfrak{O}_S is integrally closed.

Proof: Clearly $\mathfrak{O}_S \supseteq \mathfrak{O}_K$ in the number field case, so that the quotient field of \mathfrak{O}_S is the quotient field of \mathfrak{O}_K, which is K.

In the function field case, an application of the Strong Approximation Theorem shows that for all non-zero $\alpha \in K$ there is a $\beta \in K$ with

$$\text{ord}_v(\beta) \geq \max\{0, \text{ord}_v(\alpha^{-1})\}, \quad v \in S.$$

Notice that $\beta \in \mathfrak{O}_S$, as is $\alpha \beta$, so that α is in the quotient field of \mathfrak{O}_S.

Now suppose $\alpha \in K$ is integral over \mathfrak{O}_S and write

$$\alpha^n + \beta_{n-1}\alpha^{n-1} + \cdots + \beta_1 \alpha + \beta_0 = 0,$$

where the β_i’s are all in \mathfrak{O}_S.
Lemma (1)

The quotient field of the ring of S-integers is all of K and \mathfrak{O}_S is integrally closed.

Proof: Clearly $\mathfrak{O}_S \supseteq \mathfrak{O}_K$ in the number field case, so that the quotient field of \mathfrak{O}_S is the quotient field of \mathfrak{O}_K, which is K.

In the function field case, an application of the Strong Approximation Theorem shows that for all non-zero $\alpha \in K$ there is a $\beta \in K$ with

$$\text{ord}_v(\beta) \geq \max\{0, \text{ord}_v(\alpha^{-1})\}, \quad v \in S.$$

Notice that $\beta \in \mathfrak{O}_S$, as is $\alpha \beta$, so that α is in the quotient field of \mathfrak{O}_S.

Now suppose $\alpha \in K$ is integral over \mathfrak{O}_S and write

$$\alpha^n + \beta_{n-1}\alpha^{n-1} + \cdots + \beta_1\alpha + \beta_0 = 0,$$

where the β_i's are all in \mathfrak{O}_S. If $\text{ord}_v(\alpha) < 0$ for some place $v \in S$,

Lemma (1)

The quotient field of the ring of \(S \)-integers is all of \(K \) and \(\mathcal{O}_S \) is integrally closed.

Proof: Clearly \(\mathcal{O}_S \supseteq \mathcal{O}_K \) in the number field case, so that the quotient field of \(\mathcal{O}_S \) is the quotient field of \(\mathcal{O}_K \), which is \(K \).

In the function field case, an application of the Strong Approximation Theorem shows that for all non-zero \(\alpha \in K \) there is a \(\beta \in K \) with

\[
\text{ord}_v(\beta) \geq \max\{0, \text{ord}_v(\alpha^{-1})\}, \quad v \in S.
\]

Notice that \(\beta \in \mathcal{O}_S \), as is \(\alpha \beta \), so that \(\alpha \) is in the quotient field of \(\mathcal{O}_S \).

Now suppose \(\alpha \in K \) is integral over \(\mathcal{O}_S \) and write

\[
\alpha^n + \beta_{n-1}\alpha^{n-1} + \cdots + \beta_1\alpha + \beta_0 = 0,
\]

where the \(\beta_i \)'s are all in \(\mathcal{O}_S \). If \(\text{ord}_v(\alpha) < 0 \) for some place \(v \in S \), then

\[
\text{ord}_v(\alpha^n) = n\text{ord}_v(\alpha) < i\text{ord}_v(\alpha) \leq \text{ord}_v(\beta_i\alpha^i)
\]

for all \(i = 0, \ldots, n-1 \).
Lemma (1)

The quotient field of the ring of S-integers is all of K and \mathfrak{O}_S is integrally closed.

Proof: Clearly $\mathfrak{O}_S \supseteq \mathfrak{O}_K$ in the number field case, so that the quotient field of \mathfrak{O}_S is the quotient field of \mathfrak{O}_K, which is K.
In the function field case, an application of the Strong Approximation Theorem shows that for all non-zero $\alpha \in K$ there is a $\beta \in K$ with

$$\text{ord}_v(\beta) \geq \max\{0, \text{ord}_v(\alpha^{-1})\}, \quad v \in S.$$

Notice that $\beta \in \mathfrak{O}_S$, as is $\alpha \beta$, so that α is in the quotient field of \mathfrak{O}_S.
Now suppose $\alpha \in K$ is integral over \mathfrak{O}_S and write

$$\alpha^n + \beta_{n-1}\alpha^{n-1} + \cdots + \beta_1\alpha + \beta_0 = 0,$$

where the β_i’s are all in \mathfrak{O}_S. If $\text{ord}_v(\alpha) < 0$ for some place $v \in S$, then

$$\text{ord}_v(\alpha^n) = n \text{ord}_v(\alpha) < i \text{ord}_v(\alpha) \leq \text{ord}_v(\beta_i\alpha^i)$$

for all $i = 0, \ldots, n - 1$. But this can’t happen by the ultra-metric inequality!
Lemma (1)

The quotient field of the ring of S-integers is all of K and \mathcal{O}_S is integrally closed.

Proof: Clearly $\mathcal{O}_S \supseteq \mathcal{O}_K$ in the number field case, so that the quotient field of \mathcal{O}_S is the quotient field of \mathcal{O}_K, which is K.

In the function field case, an application of the Strong Approximation Theorem shows that for all non-zero $\alpha \in K$ there is a $\beta \in K$ with

$$\text{ord}_v(\beta) \geq \max\{0, \text{ord}_v(\alpha^{-1})\}, \quad v \in S.$$

Notice that $\beta \in \mathcal{O}_S$, as is $\alpha\beta$, so that α is in the quotient field of \mathcal{O}_S.

Now suppose $\alpha \in K$ is integral over \mathcal{O}_S and write

$$\alpha^n + \beta_{n-1}\alpha^{n-1} + \cdots + \beta_1\alpha + \beta_0 = 0,$$

where the β_i’s are all in \mathcal{O}_S. If $\text{ord}_v(\alpha) < 0$ for some place $v \in S$, then

$$\text{ord}_v(\alpha^n) = n\text{ord}_v(\alpha) < i\text{ord}_v(\alpha) \leq \text{ord}_v(\beta_i\alpha^i)$$

for all $i = 0, \ldots, n-1$. But this can’t happen by the ultra-metric inequality! Therefore $\alpha \in \mathcal{O}_S$.
Lemma (2)

The ring \(O \) is always a Dedekind domain.

Proof:
The proof here (along with recalling the definition of Dedekind domain) will be a week #10 exercise.

Lemma (3)

Suppose \(S \) is finite.

Then \(O \) is a principal ideal domain.

Proof:
Actually something more general is true: a Dedekind domain with a finite number of prime ideals is a principal ideal domain.
Lemma (2)

The ring \mathcal{O}_S is always a Dedekind domain.
Lemma (2)

The ring \mathcal{O}_S is always a Dedekind domain.

Proof:
Lemma (2)

The ring \mathcal{O}_S is always a Dedekind domain.

Proof: The proof here (along with recalling the definition of Dedekind domain) will be a week #10 exercise.
Lemma (2)

The ring \mathcal{O}_S is always a Dedekind domain.

Proof: The proof here (along with recalling the definition of Dedekind domain) will be a week #10 exercise.

Lemma (3)
Lemma (2)

The ring \mathfrak{O}_S is always a Dedekind domain.

Proof: The proof here (along with recalling the definition of Dedekind domain) will be a week #10 exercise.

Lemma (3)

Suppose S is finite.
Lemma (2)

The ring \mathcal{O}_S is always a Dedekind domain.

Proof: The proof here (along with recalling the definition of Dedekind domain) will be a week #10 exercise.

Lemma (3)

Suppose S is finite. Then \mathcal{O}_S is a principal ideal domain.
Lemma (2)

The ring \mathcal{O}_S is always a Dedekind domain.

Proof: The proof here (along with recalling the definition of Dedekind domain) will be a week #10 exercise.

Lemma (3)

Suppose S is finite. Then \mathcal{O}_S is a principal ideal domain.

Proof:
Lemma (2)

The ring \mathcal{O}_S is always a Dedekind domain.

Proof: The proof here (along with recalling the definition of Dedekind domain) will be a week #10 exercise.

Lemma (3)

Suppose S is finite. Then \mathcal{O}_S is a principal ideal domain.

Proof: Actually something more general is true:
Lemma (2)

The ring \mathfrak{O}_S is always a Dedekind domain.

Proof: The proof here (along with recalling the definition of Dedekind domain) will be a week #10 exercise.

Lemma (3)

Suppose S is finite. Then \mathfrak{O}_S is a principal ideal domain.

Proof: Actually something more general is true: a Dedekind domain with a finite number of prime ideals is a principal ideal domain.
Indeed, suppose R is a Dedekind domain with only finitely many prime ideals and let I be a non-zero ideal.
Indeed, suppose R is a Dedekind domain with only finitely many prime ideals and let I be a non-zero ideal. Write

$$I = \mathfrak{P}_1^{e_1} \cdots \mathfrak{P}_r^{e_r},$$
Indeed, suppose R is a Dedekind domain with only finitely many prime ideals and let \mathcal{I} be a non-zero ideal. Write

$$\mathcal{I} = \mathfrak{p}_1^{e_1} \cdots \mathfrak{p}_r^{e_r},$$

where $\mathfrak{p}_1, \ldots, \mathfrak{p}_r$ are the non-zero prime ideals of R.
Indeed, suppose R is a Dedekind domain with only finitely many prime ideals and let \mathcal{I} be a non-zero ideal. Write

$$\mathcal{I} = \mathfrak{P}_1^{e_1} \cdots \mathfrak{P}_r^{e_r},$$

where $\mathfrak{P}_1, \ldots, \mathfrak{P}_r$ are the non-zero prime ideals of R. Choose $\pi_i \in \mathfrak{P}_i \setminus \mathfrak{P}_i^2$.
Indeed, suppose R is a Dedekind domain with only finitely many prime ideals and let \mathcal{I} be a non-zero ideal. Write

$$\mathcal{I} = \mathfrak{p}_1^{e_1} \cdots \mathfrak{p}_r^{e_r},$$

where $\mathfrak{p}_1, \ldots, \mathfrak{p}_r$ are the non-zero prime ideals of R. Choose $\pi_i \in \mathfrak{p}_i \setminus \mathfrak{p}_i^2$ and via the Chinese Remainder Theorem find an element α with $\alpha \equiv \pi_i^{e_i} \mod \mathfrak{p}_i^{e_i+1}$ for all $i = 1, \ldots, r$.

The we readily see that the principal ideal $\alpha R = \mathcal{I}$.

From now on we will consider the case where $F \supseteq K$ is a finite and separable extension of K (it need not have the same field of constants as K in the function field case). Obviously separability is only an issue in the function field case. Since F is a separable extension, it is a primitive extension and we readily get a well-behaved trace and norm from F down to K. We'll denote these by $\text{Tr}_{F/K}$ and $N_{F/K}$, respectively.
Indeed, suppose R is a Dedekind domain with only finitely many prime ideals and let \mathcal{I} be a non-zero ideal. Write

$$\mathcal{I} = \mathfrak{P}_1^{e_1} \cdots \mathfrak{P}_r^{e_r},$$

where $\mathfrak{P}_1, \ldots, \mathfrak{P}_r$ are the non-zero prime ideals of R. Choose $\pi_i \in \mathfrak{P}_i \setminus \mathfrak{P}_i^2$ and via the Chinese Remainder Theorem find an element α with $\alpha \equiv \pi_i^{e_i} \mod \mathfrak{P}_i^{e_i+1}$ for all $i = 1, \ldots, r$. The we readily see that the principal ideal $\alpha R = \mathcal{I}$.
Indeed, suppose R is a Dedekind domain with only finitely many prime ideals and let I be a non-zero ideal. Write

$$ I = \mathfrak{p}_1^{e_1} \cdots \mathfrak{p}_r^{e_r}, $$

where $\mathfrak{p}_1, \ldots, \mathfrak{p}_r$ are the non-zero prime ideals of R. Choose $\pi_i \in \mathfrak{p}_i \setminus \mathfrak{p}_i^2$ and via the Chinese Remainder Theorem find an element α with $\alpha \equiv \pi_i^{e_i} \mod \mathfrak{p}_i^{e_i+1}$ for all $i = 1, \ldots, r$. The we readily see that the principal ideal $\alpha R = I$.

From now on we will consider the case where $F \supseteq K$ is a finite and separable extension of K.
Indeed, suppose \(R \) is a Dedekind domain with only finitely many prime ideals and let \(\mathcal{I} \) be a non-zero ideal. Write

\[
\mathcal{I} = \mathfrak{P}_1^{e_1} \cdots \mathfrak{P}_r^{e_r},
\]

where \(\mathfrak{P}_1, \ldots, \mathfrak{P}_r \) are the non-zero prime ideals of \(R \).

Choose \(\pi_i \in \mathfrak{P}_i \setminus \mathfrak{P}_i^2 \) and via the Chinese Remainder Theorem find an element \(\alpha \) with \(\alpha \equiv \pi_i^{e_i} \mod \mathfrak{P}_i^{e_i+1} \) for all \(i = 1, \ldots, r \). The we readily see that the principal ideal \(\alpha R = \mathcal{I} \).

From now on we will consider the case where \(F \supseteq K \) is a finite and separable extension of \(K \) (it need not have the same field of constants as \(K \) in the function field case).
Indeed, suppose R is a Dedekind domain with only finitely many prime ideals and let \mathcal{I} be a non-zero ideal. Write

$$\mathcal{I} = \mathfrak{p}_1^{e_1} \cdots \mathfrak{p}_r^{e_r},$$

where $\mathfrak{p}_1, \ldots, \mathfrak{p}_r$ are the non-zero prime ideals of R. Choose $\pi_i \in \mathfrak{p}_i \setminus \mathfrak{p}_i^2$ and via the Chinese Remainder Theorem find an element α with $\alpha \equiv \pi_i^{e_i} \mod \mathfrak{p}_i^{e_i+1}$ for all $i = 1, \ldots, r$. The we readily see that the principal ideal $\alpha R = \mathcal{I}$.

From now on we will consider the case where $F \supseteq K$ is a finite and separable extension of K (it need not have the same field of constants as K in the function field case). Obviously separability is only an issue in the function field case.
Indeed, suppose R is a Dedekind domain with only finitely many prime ideals and let \mathcal{I} be a non-zero ideal. Write

$$\mathcal{I} = \mathfrak{P}_1^{e_1} \cdots \mathfrak{P}_r^{e_r},$$

where $\mathfrak{P}_1, \ldots, \mathfrak{P}_r$ are the non-zero prime ideals of R. Choose $\pi_i \in \mathfrak{P}_i \setminus \mathfrak{P}_i^2$ and via the Chinese Remainder Theorem find an element α with $\alpha \equiv \pi_i^{e_i} \mod \mathfrak{P}_i^{e_i+1}$ for all $i = 1, \ldots, r$. The we readily see that the principal ideal $\alpha R = \mathcal{I}$.

From now on we will consider the case where $F \supseteq K$ is a finite and separable extension of K (it need not have the same field of constants as K in the function field case). Obviously separability is only an issue in the function field case. Since F is a separable extension, it is a primitive extension.
Indeed, suppose R is a Dedekind domain with only finitely many prime ideals and let \mathfrak{I} be a non-zero ideal. Write

$$\mathfrak{I} = \mathfrak{P}_1^{e_1} \cdots \mathfrak{P}_r^{e_r},$$

where $\mathfrak{P}_1, \ldots, \mathfrak{P}_r$ are the non-zero prime ideals of R. Choose $\pi_i \in \mathfrak{P}_i \setminus \mathfrak{P}_i^2$ and via the Chinese Remainder Theorem find an element α with $\alpha \equiv \pi_i^{e_i} \mod \mathfrak{P}_i^{e_i+1}$ for all $i = 1, \ldots, r$. The we readily see that the principal ideal $\alpha R = \mathfrak{I}$.

From now on we will consider the case where $F \supseteq K$ is a finite and separable extension of K (it need not have the same field of constants as K in the function field case). Obviously separability is only an issue in the function field case. Since F is a separable extension, it is a primitive extension and we readily get a well-behaved trace and norm from F down to K.

Indeed, suppose R is a Dedekind domain with only finitely many prime ideals and let \mathcal{I} be a non-zero ideal. Write

$$\mathcal{I} = \mathcal{P}_1^{e_1} \cdots \mathcal{P}_r^{e_r},$$

where $\mathcal{P}_1, \ldots, \mathcal{P}_r$ are the non-zero prime ideals of R. Choose $\pi_i \in \mathcal{P}_i \setminus \mathcal{P}_i^2$ and via the Chinese Remainder Theorem find an element α with $\alpha \equiv \pi_i^{e_i} \mod \mathcal{P}_i^{e_i+1}$ for all $i = 1, \ldots, r$. Then we readily see that the principal ideal $\alpha R = \mathcal{I}$.

From now on we will consider the case where $F \supseteq K$ is a finite and separable extension of K (it need not have the same field of constants as K in the function field case). Obviously separability is only an issue in the function field case. Since F is a separable extension, it is a primitive extension and we readily get a well-behaved trace and norm from F down to K. We’ll denote these by $\text{Tr}_{F/K}$ and $\text{N}_{F/K}$, respectively.
Lemma (4)

Let $O_S \subset K$ be a ring of S-integers of K and let $\alpha \in F \times$. Then α is integral over O_S if and only if its minimal polynomial $P(X) \in O_S[X]$. In particular, if α is integral over O_S then $\text{Tr}_{F/K}(\alpha) \in O_S$.

Proof: Obviously if $P(X) \in O_S[X]$ then α is integral over O_S. Suppose α is integral over O_S. Then the coefficients of its minimal polynomial $P(X)$ are also integral over O_S. Since O_S is integrally closed by Lemma 1, we see that $P(X) \in O_S[X]$.
Lemma (4)

Let $\mathcal{O}_S \subset K$ be a ring of S-integers of K and let $\alpha \in F^\times$. Then α is integral over \mathcal{O}_S if and only if its minimal polynomial $P(X) \in \mathcal{O}_S[X]$.

Proof:
Obviously if $P(X) \in \mathcal{O}_S[X]$ then α is integral over \mathcal{O}_S.

Suppose α is integral over \mathcal{O}_S. Then the coefficients of its minimal polynomial $P(X)$ are also integral over \mathcal{O}_S. Since \mathcal{O}_S is integrally closed by Lemma 1, we see that $P(X) \in \mathcal{O}_S[X]$.
Lemma (4)

Let $\mathcal{O}_S \subset K$ be a ring of S-integers of K and let $\alpha \in F^\times$. Then α is integral over \mathcal{O}_S if and only if its minimal polynomial $P(X) \in \mathcal{O}_S[X]$.

Proof: Obviously if $P(X) \in \mathcal{O}_S[X]$ then α is integral over \mathcal{O}_S. Suppose α is integral over \mathcal{O}_S. Then the coefficients of its minimal polynomial $P(X)$ are also integral over \mathcal{O}_S. Since \mathcal{O}_S is integrally closed by Lemma 1, we see that $P(X) \in \mathcal{O}_S[X]$.

Lemma (4)

Let $\mathcal{O}_S \subset K$ be a ring of S-integers of K and let $\alpha \in F^\times$. Then α is integral over \mathcal{O}_S if and only if its minimal polynomial $P(X) \in \mathcal{O}_S[X]$. In particular, if α is integral over \mathcal{O}_S then $\text{Tr}_{F/K}(\alpha) \in \mathcal{O}_S$.

Proof: Obviously if $P(X) \in \mathcal{O}_S[X]$ then α is integral over \mathcal{O}_S. Suppose α is integral over \mathcal{O}_S. Then the coefficients of its minimal polynomial $P(X)$ are also integral over \mathcal{O}_S. Since \mathcal{O}_S is integrally closed by Lemma 1, we see that $P(X) \in \mathcal{O}_S[X]$.

Lemma (4)

Let $\mathcal{O}_S \subset K$ be a ring of S-integers of K and let $\alpha \in F^\times$. Then α is integral over \mathcal{O}_S if and only if its minimal polynomial $P(X) \in \mathcal{O}_S[X]$. In particular, if α is integral over \mathcal{O}_S then $\text{Tr}_{F/K}(\alpha) \in \mathcal{O}_S$.

Proof:
Lemma (4)

Let $\mathcal{O}_S \subset K$ be a ring of S-integers of K and let $\alpha \in F^\times$. Then α is integral over \mathcal{O}_S if and only if its minimal polynomial $P(X) \in \mathcal{O}_S[X]$. In particular, if α is integral over \mathcal{O}_S then $\text{Tr}_{F/K}(\alpha) \in \mathcal{O}_S$.

Proof: Obviously if $P(X) \in \mathcal{O}_S[X]$ then α is integral over \mathcal{O}_S.
Lemma (4)

Let $\mathcal{O}_S \subset K$ be a ring of S-integers of K and let $\alpha \in F^\times$. Then α is integral over \mathcal{O}_S if and only if its minimal polynomial $P(X) \in \mathcal{O}_S[X]$. In particular, if α is integral over \mathcal{O}_S then $\text{Tr}_{F/K}(\alpha) \in \mathcal{O}_S$.

Proof: Obviously if $P(X) \in \mathcal{O}_S[X]$ then α is integral over \mathcal{O}_S. Suppose α is integral over \mathcal{O}_S.

Lemma (4)

Let $\mathcal{O}_S \subset K$ be a ring of S-integers of K and let $\alpha \in F^\times$. Then α is integral over \mathcal{O}_S if and only if its minimal polynomial $P(X) \in \mathcal{O}_S[X]$. In particular, if α is integral over \mathcal{O}_S then $\text{Tr}_{F/K}(\alpha) \in \mathcal{O}_S$.

Proof: Obviously if $P(X) \in \mathcal{O}_S[X]$ then α is integral over \mathcal{O}_S.

Suppose α is integral over \mathcal{O}_S.

Then the coefficients of its minimal polynomial $P(X)$ are also integral over \mathcal{O}_S.
Lemma (4)

Let $\mathfrak{O}_S \subset K$ be a ring of S-integers of K and let $\alpha \in F^\times$. Then α is integral over \mathfrak{O}_S if and only if its minimal polynomial $P(X) \in \mathfrak{O}_S[X]$. In particular, if α is integral over \mathfrak{O}_S then $\text{Tr}_{F/K}(\alpha) \in \mathfrak{O}_S$.

Proof: Obviously if $P(X) \in \mathfrak{O}_S[X]$ then α is integral over \mathfrak{O}_S.
Suppose α is integral over \mathfrak{O}_S.
Then the coefficients of its minimal polynomial $P(X)$ are also integral over \mathfrak{O}_S.
Since \mathfrak{O}_S is integrally closed by Lemma 1,
Lemma (4)

Let $\mathcal{O}_S \subset K$ be a ring of S-integers of K and let $\alpha \in F^\times$. Then α is integral over \mathcal{O}_S if and only if its minimal polynomial $P(X) \in \mathcal{O}_S[X]$. In particular, if α is integral over \mathcal{O}_S then $\text{Tr}_{F/K}(\alpha) \in \mathcal{O}_S$.

Proof: Obviously if $P(X) \in \mathcal{O}_S[X]$ then α is integral over \mathcal{O}_S.
Suppose α is integral over \mathcal{O}_S. Then the coefficients of its minimal polynomial $P(X)$ are also integral over \mathcal{O}_S.
Since \mathcal{O}_S is integrally closed by Lemma 1, we see that $P(X) \in \mathcal{O}_S[X]$.
Lemma (5)

Let \(\{\alpha_1, \ldots, \alpha_n\}\) be a basis of \(F\) over \(K\). Then there are uniquely determined elements \(\alpha^*_1, \ldots, \alpha^*_n \in F\) such that
\[
\text{Tr}_{F/K}(\alpha_i \alpha^*_j) = \begin{cases}
1 & \text{if } i = j, \\
0 & \text{otherwise.}
\end{cases}
\]
The set \(\{\alpha^*_1, \ldots, \alpha^*_n\}\) is also a basis for \(F\) over \(K\), called the dual basis with respect to the trace.
Lemma (5)

Let \(\{ \alpha_1, \ldots, \alpha_n \} \) be a basis of \(F \) over \(K \).
Lemma (5)

Let \(\{\alpha_1, \ldots, \alpha_n\} \) be a basis of \(F \) over \(K \). Then there are uniquely determined elements \(\alpha_1^*, \ldots, \alpha_n^* \in F \) such that

\[
\text{Tr}_{F/K}(\alpha_i \alpha_j^*) = \begin{cases}
1 & \text{if } i = j, \\
0 & \text{otherwise}.
\end{cases}
\]

The set \(\{\alpha_1^*, \ldots, \alpha_n^*\} \) is also a basis for \(F \) over \(K \), called the dual basis with respect to the trace.
Lemma (5)

Let \(\{\alpha_1, \ldots, \alpha_n\} \) be a basis of \(F \) over \(K \). Then there are uniquely determined elements \(\alpha_1^*, \ldots, \alpha_n^* \in F \) such that

\[
\text{Tr}_{F/K}(\alpha_i \alpha_j^*) = \begin{cases}
1 & \text{if } i = j, \\
0 & \text{otherwise.}
\end{cases}
\]

The set \(\{\alpha_1^*, \ldots, \alpha_n^*\} \) is also a basis for \(F \) over \(K \), called the dual basis with respect to the trace.
Lemma (5)

Let \(\{ \alpha_1, \ldots, \alpha_n \} \) be a basis of \(F \) over \(K \). Then there are uniquely determined elements \(\alpha_1^*, \ldots, \alpha_n^* \in F \) such that

\[
\text{Tr}_{F/K}(\alpha_i \alpha_j^*) = \begin{cases}
1 & \text{if } i = j, \\
0 & \text{otherwise.}
\end{cases}
\]
Lemma (5)

Let \(\{\alpha_1, \ldots, \alpha_n\} \) be a basis of \(F \) over \(K \). Then there are uniquely determined elements \(\alpha_1^*, \ldots, \alpha_n^* \in F \) such that

\[
\text{Tr}_{F/K}(\alpha_i \alpha_j^*) = \begin{cases}
1 & \text{if } i = j, \\
0 & \text{otherwise.}
\end{cases}
\]

The set \(\{\alpha_1^*, \ldots, \alpha_n^*\} \) is also a basis for \(F \) over \(K \),
Lemma (5)

Let \(\{\alpha_1, \ldots, \alpha_n\} \) be a basis of \(F \) over \(K \). Then there are uniquely determined elements \(\alpha_1^*, \ldots, \alpha_n^* \in F \) such that

\[
\text{Tr}_{F/K}(\alpha_i \alpha_j^*) = \begin{cases}
1 & \text{if } i = j, \\
0 & \text{otherwise.}
\end{cases}
\]

The set \(\{\alpha_1^*, \ldots, \alpha_n^*\} \) is also a basis for \(F \) over \(K \), called the dual basis with respect to the trace.
Proof:

Consider the dual space F^* of F over K, i.e., the K-vector space of all linear maps from F to K. From linear algebra F^* is isomorphic to F as K-vector spaces.

For $\alpha \in F$ and $\theta \in F^*$ define $\alpha \theta \in F^*$ by $\alpha \theta(\beta) := \theta(\alpha \beta)$.

One easily verifies that this turns F^* into an F-vector space of dimension 1.

Now $\text{Tr}_{F/K}$ is not identically zero, so that any $\theta \in F^*$ has a unique representation $\theta = \alpha \text{Tr}_{F/K}$.

We apply this to the linear forms $\theta_1, \ldots, \theta_n \in F^*$ given by $\theta_i(\alpha_j) = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{otherwise.} \end{cases}$

Writing $\theta_i = \alpha^*_i \text{Tr}_{F/K}$ completes the proof.

Proof: Consider the dual space F^* of F over K,

...
Proof: Consider the dual space F^* of F over K, i.e., the K-vector space of all linear maps from F to K.

One easily verifies that this turns F^* into an F-vector space of dimension 1. Now $\text{Tr}_{F/K}$ is not identically zero, so that any $\theta \in F^*$ has a unique representation $\theta = \alpha \text{Tr}_{F/K}$. We apply this to the linear forms $\theta_1, \ldots, \theta_n \in F^*$ given by $\theta_i(\alpha_j) = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{otherwise.} \end{cases}$ Writing $\theta_i = \alpha^*_i \text{Tr}_{F/K}$ completes the proof.
Proof: Consider the dual space F^* of F over K, i.e., the K-vector space of all linear maps from F to K. From linear algebra F^* is isomorphic to F as K-vector spaces.
Proof: Consider the dual space F^* of F over K, i.e., the K-vector space of all linear maps from F to K. From linear algebra F^* is isomorphic to F as K-vector spaces. For $\alpha \in F$ and $\theta \in F^*$ define $\alpha \theta \in F^*$ by
Proof: Consider the dual space F^* of F over K, i.e., the K-vector space of all linear maps from F to K. From linear algebra F^* is isomorphic to F as K-vector spaces. For $\alpha \in F$ and $\theta \in F^*$ define $\alpha \theta \in F^*$ by

$$\alpha \theta(\beta) := \theta(\alpha \beta).$$
Proof: Consider the dual space F^* of F over K, i.e., the K-vector space of all linear maps from F to K. From linear algebra F^* is isomorphic to F as K-vector spaces. For $\alpha \in F$ and $\theta \in F^*$ define $\alpha \theta \in F^*$ by

$$\alpha \theta(\beta) := \theta(\alpha \beta).$$

One easily verifies that this turns F^* into an F-vector space of dimension 1.
Proof: Consider the dual space F^* of F over K, i.e., the K-vector space of all linear maps from F to K. From linear algebra F^* is isomorphic to F as K-vector spaces. For $\alpha \in F$ and $\theta \in F^*$ define $\alpha \theta \in F^*$ by

$$\alpha \theta(\beta) := \theta(\alpha \beta).$$

One easily verifies that this turns F^* into an F-vector space of dimension 1. Now $\text{Tr}_{F/K}$ is not identically zero,
Proof: Consider the dual space F^* of F over K, i.e., the K-vector space of all linear maps from F to K. From linear algebra F^* is isomorphic to F as K-vector spaces. For $\alpha \in F$ and $\theta \in F^*$ define $\alpha \theta \in F^*$ by

$$\alpha \theta(\beta) := \theta(\alpha \beta).$$

One easily verifies that this turns F^* into an F-vector space of dimension 1. Now $\text{Tr}_{F/K}$ is not identically zero, so that any $\theta \in F^*$ has a unique representation $\theta = \alpha \text{Tr}_{F/K}$.
Proof: Consider the dual space F^* of F over K, i.e., the K-vector space of all linear maps from F to K. From linear algebra F^* is isomorphic to F as K-vector spaces. For $\alpha \in F$ and $\theta \in F^*$ define $\alpha \theta \in F^*$ by

$$\alpha \theta(\beta) := \theta(\alpha \beta).$$

One easily verifies that this turns F^* into an F-vector space of dimension 1. Now $\text{Tr}_{F/K}$ is not identically zero, so that any $\theta \in F^*$ has a unique representation $\theta = \alpha \text{Tr}_{F/K}$.

We apply this to the linear forms $\theta_1, \ldots, \theta_n \in F^*$ given by
Proof: Consider the dual space F^* of F over K, i.e., the K-vector space of all linear maps from F to K. From linear algebra F^* is isomorphic to F as K-vector spaces. For $\alpha \in F$ and $\theta \in F^*$ define $\alpha \theta \in F^*$ by

$$\alpha \theta(\beta) := \theta(\alpha \beta).$$

One easily verifies that this turns F^* into an F-vector space of dimension 1. Now $\text{Tr}_{F/K}$ is not identically zero, so that any $\theta \in F^*$ has a unique representation $\theta = \alpha \text{Tr}_{F/K}$.

We apply this to the linear forms $\theta_1, \ldots, \theta_n \in F^*$ given by

$$\theta_i(\alpha_j) = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{otherwise.} \end{cases}$$
Proof: Consider the dual space F^* of F over K, i.e., the K-vector space of all linear maps from F to K. From linear algebra F^* is isomorphic to F as K-vector spaces. For $\alpha \in F$ and $\theta \in F^*$ define $\alpha \theta \in F^*$ by

$$\alpha \theta(\beta) := \theta(\alpha \beta).$$

One easily verifies that this turns F^* into an F-vector space of dimension 1. Now $\text{Tr}_{F/K}$ is not identically zero, so that any $\theta \in F^*$ has a unique representation $\theta = \alpha \text{Tr}_{F/K}$.

We apply this to the linear forms $\theta_1, \ldots, \theta_n \in F^*$ given by

$$\theta_i(\alpha_j) = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{otherwise}. \end{cases}$$
Proof: Consider the dual space F^* of F over K, i.e., the K-vector space of all linear maps from F to K. From linear algebra F^* is isomorphic to F as K-vector spaces. For $\alpha \in F$ and $\theta \in F^*$ define $\alpha \theta \in F^*$ by

$$\alpha \theta(\beta) := \theta(\alpha \beta).$$

One easily verifies that this turns F^* into an F-vector space of dimension 1. Now $\text{Tr}_{F/K}$ is not identically zero, so that any $\theta \in F^*$ has a unique representation $\theta = \alpha \text{Tr}_{F/K}$.

We apply this to the linear forms $\theta_1, \ldots, \theta_n \in F^*$ given by

$$\theta_i(\alpha_j) = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{otherwise.} \end{cases}$$

Writing $\theta_i = \alpha_i^* \text{Tr}_{F/K}$ completes the proof.