February 24, 2021
From now on we will denote the field $\mathbb{Z}/p\mathbb{Z}$ for a prime p more compactly by F_p.

More generally, for q a power of a prime p, F_q will denote the finite field with q elements.

Definition

A function field is a finite algebraic extension of the field of rational functions $F_p(\mathbb{X})$, where \mathbb{X} is transcendental over F_p (i.e., a "variable").

If K is such a field, then the subset of elements that are algebraic over F_p is clearly an algebraic extension of F_p called the field of constants of K.

Note that any element α not in the field of constants is by definition transcendental over F_p and $[K:F_p(\alpha)] < \infty$.

Definition

A valuation ring of a field K is a proper subring $R \subseteq K$ such that for all $a \in K$, either $a \in R$ or $a^{-1} \in R$.
Places of Number Fields and Function Fields

From now on we will denote the field $\mathbb{Z}/p\mathbb{Z}$ for a prime p more compactly by \mathbb{F}_p.
From now on we will denote the field $\mathbb{Z}/p\mathbb{Z}$ for a prime p more compactly by \mathbb{F}_p. More generally,
From now on we will denote the field $\mathbb{Z}/p\mathbb{Z}$ for a prime p more compactly by \mathbb{F}_p. More generally, for q a power of a prime p, ...
From now on we will denote the field $\mathbb{Z}/p\mathbb{Z}$ for a prime p more compactly by \mathbb{F}_p. More generally, for q a power of a prime p, \mathbb{F}_q will denote the finite field with q elements.
From now on we will denote the field $\mathbb{Z}/p\mathbb{Z}$ for a prime p more compactly by \mathbb{F}_p. More generally, for q a power of a prime p, \mathbb{F}_q will denote the finite field with q elements.

Definition

A function field is a finite algebraic extension of the field of rational functions $\mathbb{F}_p(\mathbb{X})$, where \mathbb{X} is transcendental over \mathbb{F}_p (i.e., a "variable"). If K is such a field, then the subset of elements that are algebraic over \mathbb{F}_p is clearly an algebraic extension of \mathbb{F}_p called the field of constants of K.

Note that any element α not in the field of constants is by definition transcendental over \mathbb{F}_p and $[K:\mathbb{F}_p(\alpha)]<\infty$.

Definition

A valuation ring of a field K is a proper subring $R \subseteq K$ such that for all $a \in K$, either $a \in R$ or $a^{-1} \in R$.
From now on we will denote the field $\mathbb{Z}/p\mathbb{Z}$ for a prime p more compactly by \mathbb{F}_p. More generally, for q a power of a prime p, \mathbb{F}_q will denote the finite field with q elements.

Definition

A *function field* is a finite algebraic extension of the field of rational functions $\mathbb{F}_p(X)$,
From now on we will denote the field $\mathbb{Z}/p\mathbb{Z}$ for a prime p more compactly by \mathbb{F}_p. More generally, for q a power of a prime p, \mathbb{F}_q will denote the finite field with q elements.

Definition

A *function field* is a finite algebraic extension of the field of rational functions $\mathbb{F}_p(X)$, where X is transcendental over \mathbb{F}_p.
Places of Number Fields and Function Fields

From now on we will denote the field \(\mathbb{Z}/p\mathbb{Z} \) for a prime \(p \) more compactly by \(\mathbb{F}_p \). More generally, for \(q \) a power of a prime \(p \), \(\mathbb{F}_q \) will denote the finite field with \(q \) elements.

Definition

A *function field* is a finite algebraic extension of the field of rational functions \(\mathbb{F}_p(X) \), where \(X \) is transcendental over \(\mathbb{F}_p \) (i.e., a “variable”).
From now on we will denote the field $\mathbb{Z}/p\mathbb{Z}$ for a prime p more compactly by \mathbb{F}_p. More generally, for q a power of a prime p, \mathbb{F}_q will denote the finite field with q elements.

Definition

A *function field* is a finite algebraic extension of the field of rational functions $\mathbb{F}_p(X)$, where X is transcendental over \mathbb{F}_p (i.e., a “variable”). If K is such a field, then the subset of elements that are algebraic over \mathbb{F}_p...
From now on we will denote the field $\mathbb{Z}/p\mathbb{Z}$ for a prime p more compactly by \mathbb{F}_p. More generally, for q a power of a prime p, \mathbb{F}_q will denote the finite field with q elements.

Definition

A function field is a finite algebraic extension of the field of rational functions $\mathbb{F}_p(X)$, where X is transcendental over \mathbb{F}_p (i.e., a “variable”). If K is such a field, then the subset of elements that are algebraic over \mathbb{F}_p is clearly an algebraic extension of \mathbb{F}_p.
From now on we will denote the field \(\mathbb{Z}/p\mathbb{Z} \) for a prime \(p \) more compactly by \(\mathbb{F}_p \). More generally, for \(q \) a power of a prime \(p \), \(\mathbb{F}_q \) will denote the finite field with \(q \) elements.

Definition

A *function field* is a finite algebraic extension of the field of rational functions \(\mathbb{F}_p(X) \), where \(X \) is transcendental over \(\mathbb{F}_p \) (i.e., a “variable”). If \(K \) is such a field, then the subset of elements that are algebraic over \(\mathbb{F}_p \) is clearly an algebraic extension of \(\mathbb{F}_p \) called the *field of constants* of \(K \).
From now on we will denote the field $\mathbb{Z}/p\mathbb{Z}$ for a prime p more compactly by \mathbb{F}_p. More generally, for q a power of a prime p, \mathbb{F}_q will denote the finite field with q elements.

Definition

A *function field* is a finite algebraic extension of the field of rational functions $\mathbb{F}_p(X)$, where X is transcendental over \mathbb{F}_p (i.e., a “variable”). If K is such a field, then the subset of elements that are algebraic over \mathbb{F}_p is clearly an algebraic extension of \mathbb{F}_p called the *field of constants* of K.

Note that any element α not in the field of constants is by definition transcendental over \mathbb{F}_p.
From now on we will denote the field $\mathbb{Z}/p\mathbb{Z}$ for a prime p more compactly by \mathbb{F}_p. More generally, for q a power of a prime p, \mathbb{F}_q will denote the finite field with q elements.

Definition

A *function field* is a finite algebraic extension of the field of rational functions $\mathbb{F}_p(X)$, where X is transcendental over \mathbb{F}_p (i.e., a “variable”). If K is such a field, then the subset of elements that are algebraic over \mathbb{F}_p is clearly an algebraic extension of \mathbb{F}_p called the *field of constants* of K.

Note that any element α not in the field of constants is by definition transcendental over \mathbb{F}_p and $[K : \mathbb{F}_p(\alpha)] < \infty$.
From now on we will denote the field $\mathbb{Z}/p\mathbb{Z}$ for a prime p more compactly by \mathbb{F}_p. More generally, for q a power of a prime p, \mathbb{F}_q will denote the finite field with q elements.

Definition

A function field is a finite algebraic extension of the field of rational functions $\mathbb{F}_p(X)$, where X is transcendental over \mathbb{F}_p (i.e., a “variable”). If K is such a field, then the subset of elements that are algebraic over \mathbb{F}_p is clearly an algebraic extension of \mathbb{F}_p called the field of constants of K.

Note that any element α not in the field of constants is by definition transcendental over \mathbb{F}_p and $[K : \mathbb{F}_p(\alpha)] < \infty$.

Definition
Places of Number Fields and Function Fields

From now on we will denote the field $\mathbb{Z}/p\mathbb{Z}$ for a prime p more compactly by \mathbb{F}_p. More generally, for q a power of a prime p, \mathbb{F}_q will denote the finite field with q elements.

Definition

A *function field* is a finite algebraic extension of the field of rational functions $\mathbb{F}_p(X)$, where X is transcendental over \mathbb{F}_p (i.e., a “variable”). If K is such a field, then the subset of elements that are algebraic over \mathbb{F}_p is clearly an algebraic extension of \mathbb{F}_p called the *field of constants* of K.

Note that any element α not in the field of constants is by definition transcendental over \mathbb{F}_p and $[K : \mathbb{F}_p(\alpha)] < \infty$.

Definition

A *valuation ring* of a field K is a proper subring $R \subseteq K$...
From now on we will denote the field $\mathbb{Z}/p\mathbb{Z}$ for a prime p more compactly by \mathbb{F}_p. More generally, for q a power of a prime p, \mathbb{F}_q will denote the finite field with q elements.

Definition

A function field is a finite algebraic extension of the field of rational functions $\mathbb{F}_p(X)$, where X is transcendental over \mathbb{F}_p (i.e., a "variable"). If K is such a field, then the subset of elements that are algebraic over \mathbb{F}_p is clearly an algebraic extension of \mathbb{F}_p called the field of constants of K.

Note that any element α not in the field of constants is by definition transcendental over \mathbb{F}_p and $[K : \mathbb{F}_p(\alpha)] < \infty$.

Definition

A valuation ring of a field K is a proper subring $R \subsetneq K$ such that for all $a \in K$,
From now on we will denote the field $\mathbb{Z}/p\mathbb{Z}$ for a prime p more compactly by \mathbb{F}_p. More generally, for q a power of a prime p, \mathbb{F}_q will denote the finite field with q elements.

Definition

A *function field* is a finite algebraic extension of the field of rational functions $\mathbb{F}_p(X)$, where X is transcendental over \mathbb{F}_p (i.e., a “variable”). If K is such a field, then the subset of elements that are algebraic over \mathbb{F}_p is clearly an algebraic extension of \mathbb{F}_p called the *field of constants* of K.

Note that any element α not in the field of constants is by definition transcendental over \mathbb{F}_p and $[K : \mathbb{F}_p(\alpha)] < \infty$.

Definition

A *valuation ring* of a field K is a proper subring $R \subsetneq K$ such that for all $a \in K$, either $a \in R$ or $a^{-1} \in R$.
Note that any valuation ring R of a field contains \mathbb{Z} in characteristic 0 or \mathbb{F}_p in characteristic p, since $\pm 1 \in R$.

Example 1: Suppose K is a number field. Given a non-trivial prime ideal $P \subset \mathcal{O}_K$, the ring \mathcal{O}_P introduced in exercise #4 from week 5 is a valuation ring of the number field K.

Example 2: Extend the usual notion of the degree of a polynomial to rational functions by setting the degree of a quotient P/Q, $P, Q \in \mathbb{F}_q[X]$, to be $\deg(P) - \deg(Q)$. (Note that this is well-defined.) Then the subset of $\mathbb{F}_q(X)$ consisting of rational functions of degree no more than 0 is a valuation ring.

Lemma (1): All valuation rings are local rings, i.e., have a unique maximal ideal.
Note that any valuation ring R of a field contains \mathbb{Z} in characteristic 0.
Note that any valuation ring R of a field contains \mathbb{Z} in characteristic 0 or \mathbb{F}_p in characteristic p.

Example 1: Suppose K is a number field. Given a non-trivial prime ideal $P \subset \mathcal{O}_K$, the ring \mathcal{O}_P introduced in exercise #4 from week 5 is a valuation ring of the number field K.

Example 2: Extend the usual notion of the degree of a polynomial to rational functions by setting the degree of a quotient P/Q, $P, Q \in \mathbb{F}_q[X]$, to be $\deg(P) - \deg(Q)$. (Note that this is well-defined.) Then the subset of $\mathbb{F}_q(X)$ consisting of rational functions of degree no more than 0 is a valuation ring.

Lemma (1) All valuation rings are local rings, i.e., have a unique maximal ideal.
Note that any valuation ring R of a field contains \mathbb{Z} in characteristic 0 or \mathbb{F}_p in characteristic p since $\pm 1 \in R$.

Example 1: Suppose K is a number field. Given a non-trivial prime ideal $P \subset \mathcal{O}_K$, the ring \mathcal{O}_P introduced in exercise #4 from week 5 is a valuation ring of the number field K.

Example 2: Extend the usual notion of the degree of a polynomial to rational functions by setting the degree of a quotient P/Q, $P, Q \in \mathbb{F}_q[\mathbb{X}]$, to be $\deg(P) - \deg(Q)$. (Note that this is well-defined.) Then the subset of $\mathbb{F}_q(\mathbb{X})$ consisting of rational functions of degree no more than 0 is a valuation ring.

Lemma (1) All valuation rings are local rings, i.e., have a unique maximal ideal.
Note that any valuation ring R of a field contains \mathbb{Z} in characteristic 0 or \mathbb{F}_p in characteristic p since $\pm 1 \in R$.

Example 1:
Note that any valuation ring R of a field contains \mathbb{Z} in characteristic 0 or \mathbb{F}_p in characteristic p since $\pm 1 \in R$.

Example 1: Suppose K is a number field.
Note that any valuation ring R of a field contains \mathbb{Z} in characteristic 0 or \mathbb{F}_p in characteristic p since $\pm 1 \in R$.

Example 1: Suppose K is a number field. Given a non-trivial prime ideal $\mathfrak{P} \subset \mathcal{O}_K$,

Example 2: Extend the usual notion of the degree of a polynomial to rational functions by setting the degree of a quotient P/Q, $P, Q \in \mathbb{F}_q[X]$, to be $\deg(P) - \deg(Q)$. (Note that this is well-defined.) Then the subset of $\mathbb{F}_q(X)$ consisting of rational functions of degree no more than 0 is a valuation ring.

Lemma (1) All valuation rings are local rings, i.e., have a unique maximal ideal.
Note that any valuation ring R of a field contains \mathbb{Z} in characteristic 0 or \mathbb{F}_p in characteristic p since $\pm 1 \in R$.

Example 1: Suppose K is a number field. Given a non-trivial prime ideal $\mathfrak{P} \subset \mathcal{O}_K$, the ring $\mathcal{O}_\mathfrak{P}$ introduced in exercise #4 from week 5 is a valuation ring of the number field K.

Example 2: Extend the usual notion of the degree of a polynomial to rational functions by setting the degree of a quotient $\frac{P}{Q}$, $P, Q \in \mathbb{F}_q[X]$, to be $\deg(P) - \deg(Q)$. (Note that this is well-defined.) Then the subset of $\mathbb{F}_q(X)$ consisting of rational functions of degree no more than 0 is a valuation ring.

Lemma (1) All valuation rings are local rings, i.e., have a unique maximal ideal.
Note that any valuation ring R of a field contains \mathbb{Z} in characteristic 0 or \mathbb{F}_p in characteristic p since $\pm 1 \in R$.

Example 1: Suppose K is a number field. Given a non-trivial prime ideal $\mathfrak{P} \subset \mathcal{O}_K$, the ring $\mathcal{O}_{\mathfrak{P}}$ introduced in exercise #4 from week 5 is a valuation ring of the number field K.

Example 2:
Note that any valuation ring R of a field contains \mathbb{Z} in characteristic 0 or \mathbb{F}_p in characteristic p since $\pm 1 \in R$.

Example 1: Suppose K is a number field. Given a non-trivial prime ideal $\mathfrak{P} \subset \mathcal{O}_K$, the ring $\mathcal{O}_{\mathfrak{P}}$ introduced in exercise $\#4$ from week 5 is a valuation ring of the number field K.

Example 2: Extend the usual notion of the degree of a polynomial to rational functions by setting the degree of a quotient $\frac{P}{Q}$, $P, Q \in \mathbb{F}_q[X]$, to be $\deg(P) - \deg(Q)$. (Note that this is well-defined.) Then the subset of $\mathbb{F}_q(X)\,$ consisting of rational functions of degree no more than 0 is a valuation ring.

Lemma (1) All valuation rings are local rings, i.e., have a unique maximal ideal.
Note that any valuation ring R of a field contains \mathbb{Z} in characteristic 0 or \mathbb{F}_p in characteristic p since $\pm 1 \in R$.

Example 1: Suppose K is a number field. Given a non-trivial prime ideal $\mathfrak{P} \subset \mathcal{O}_K$, the ring $\mathcal{O}_\mathfrak{P}$ introduced in exercise #4 from week 5 is a valuation ring of the number field K.

Example 2: Extend the usual notion of the degree of a polynomial to rational functions by setting the degree of a quotient P/Q,
Note that any valuation ring R of a field contains \mathbb{Z} in characteristic 0 or \mathbb{F}_p in characteristic p since $\pm 1 \in R$.

Example 1: Suppose K is a number field. Given a non-trivial prime ideal $\mathfrak{P} \subset \mathcal{O}_K$, the ring $\mathcal{O}_{\mathfrak{P}}$ introduced in exercise #4 from week 5 is a valuation ring of the number field K.

Example 2: Extend the usual notion of the degree of a polynomial to rational functions by setting the degree of a quotient P/Q, $P, Q \in \mathbb{F}_q[X]$, to be $\deg(P) - \deg(Q)$. (Note that this is well-defined.) Then the subset of $\mathbb{F}_q(X)$ consisting of rational functions of degree no more than 0 is a valuation ring.

Lemma (1): All valuation rings are local rings, i.e., have a unique maximal ideal.
Note that any valuation ring R of a field contains \mathbb{Z} in characteristic 0 or \mathbb{F}_p in characteristic p since $\pm 1 \in R$.

Example 1: Suppose K is a number field. Given a non-trivial prime ideal $\mathfrak{p} \subset \mathcal{O}_K$, the ring $\mathcal{O}_{\mathfrak{p}}$ introduced in exercise #4 from week 5 is a valuation ring of the number field K.

Example 2: Extend the usual notion of the degree of a polynomial to rational functions by setting the degree of a quotient P/Q, $P, Q \in \mathbb{F}_q[X]$, to be $\deg(P) - \deg(Q)$.
Note that any valuation ring R of a field contains \mathbb{Z} in characteristic 0 or \mathbb{F}_p in characteristic p since $\pm 1 \in R$.

Example 1: Suppose K is a number field. Given a non-trivial prime ideal $\mathfrak{p} \subset \mathcal{O}_K$, the ring $\mathcal{O}_{\mathfrak{p}}$ introduced in exercise #4 from week 5 is a valuation ring of the number field K.

Example 2: Extend the usual notion of the degree of a polynomial to rational functions by setting the degree of a quotient P/Q, $P, Q \in \mathbb{F}_q[X]$, to be $\text{deg}(P) - \text{deg}(Q)$. (Note that this is well-defined.)
Note that any valuation ring R of a field contains \mathbb{Z} in characteristic 0 or \mathbb{F}_p in characteristic p since $\pm 1 \in R$.

Example 1: Suppose K is a number field. Given a non-trivial prime ideal $\mathfrak{P} \subset \mathcal{O}_K$, the ring $\mathcal{O}_{\mathfrak{P}}$ introduced in exercise #4 from week 5 is a valuation ring of the number field K.

Example 2: Extend the usual notion of the degree of a polynomial to rational functions by setting the degree of a quotient P/Q, $P, Q \in \mathbb{F}_q[X]$, to be $\deg(P) - \deg(Q)$. (Note that this is well-defined.) Then the subset of $\mathbb{F}_q(X)$ consisting of rational functions of degree no more than 0 is a valuation ring.
Note that any valuation ring R of a field contains \mathbb{Z} in characteristic 0 or \mathbb{F}_p in characteristic p since $\pm 1 \in R$.

Example 1: Suppose K is a number field. Given a non-trivial prime ideal $\mathfrak{P} \subset \mathcal{O}_K$, the ring $\mathcal{O}_\mathfrak{P}$ introduced in exercise $\#4$ from week 5 is a valuation ring of the number field K.

Example 2: Extend the usual notion of the degree of a polynomial to rational functions by setting the degree of a quotient P/Q, $P, Q \in \mathbb{F}_q[X]$, to be $\deg(P) - \deg(Q)$. (Note that this is well-defined.) Then the subset of $\mathbb{F}_q(X)$ consisting of rational functions of degree no more than 0 is a valuation ring.

Lemma (1)
Note that any valuation ring R of a field contains \mathbb{Z} in characteristic 0 or \mathbb{F}_p in characteristic p since $\pm 1 \in R$.

Example 1: Suppose K is a number field. Given a non-trivial prime ideal $\mathfrak{p} \subset \mathcal{O}_K$, the ring $\mathcal{O}_\mathfrak{p}$ introduced in exercise #4 from week 5 is a valuation ring of the number field K.

Example 2: Extend the usual notion of the degree of a polynomial to rational functions by setting the degree of a quotient P/Q, $P, Q \in \mathbb{F}_q[X]$, to be $\deg(P) - \deg(Q)$. (Note that this is well-defined.) Then the subset of $\mathbb{F}_q(X)$ consisting of rational functions of degree no more than 0 is a valuation ring.

Lemma (1)

All valuation rings are local rings,
Note that any valuation ring R of a field contains \mathbb{Z} in characteristic 0 or \mathbb{F}_p in characteristic p since $\pm 1 \in R$.

Example 1: Suppose K is a number field. Given a non-trivial prime ideal $\mathfrak{p} \subset \mathcal{O}_K$, the ring $\mathcal{O}_\mathfrak{p}$ introduced in exercise #4 from week 5 is a valuation ring of the number field K.

Example 2: Extend the usual notion of the degree of a polynomial to rational functions by setting the degree of a quotient P/Q, $P, Q \in \mathbb{F}_q[X]$, to be $\deg(P) - \deg(Q)$. (Note that this is well-defined.) Then the subset of $\mathbb{F}_q(X)$ consisting of rational functions of degree no more than 0 is a valuation ring.

Lemma (1)

All valuation rings are local rings, i.e., have a unique maximal ideal.
Proof:

Let R be a valuation ring of a field and let M denote the non-units of R. Note that M consists of more than simply the element 0 since otherwise $R = K$.

Let $\alpha \in M$ and $\beta \in R$. If $\alpha \beta$ is a unit then $\beta (\alpha \beta - 1) = \alpha - 1 \in R$ so that α is a unit, contradicting our hypothesis. Thus $\alpha \beta \in M$.

Now suppose $\beta \in M$ and consider $\alpha + \beta \in R$. If either α or β is 0 then clearly $\alpha + \beta \in M$, so suppose otherwise. Since R is a valuation ring we may assume without loss of generality that $\alpha/\beta \in R$. Then $1 + (\alpha/\beta) \in R$ and so $\beta (1 + (\alpha/\beta)) = \alpha + \beta \in M$ by what we have already shown.

Thus M is an ideal. It is clearly the unique maximal ideal of R since any ideal not properly contained in M must contain a unit, whence must be the entire ring.
Proof: Let R be a valuation ring of a field.

Note that M consists of more than simply the element 0 since otherwise $R = K$.

Let $\alpha \in M$ and $\beta \in R$. If $\alpha \beta$ is a unit, then $\beta (\alpha \beta)^{-1} = \alpha^{-1} \in R$ so that α is a unit, contradicting our hypothesis. Thus $\alpha \beta \in M$.

Now suppose $\beta \in M$ and consider $\alpha + \beta \in R$. If either α or β is 0, then clearly $\alpha + \beta \in M$, so suppose otherwise. Since R is a valuation ring, we may assume without loss of generality that $\alpha/\beta \in R$. Then $1 + (\alpha/\beta) \in R$ and so $\beta (1 + (\alpha/\beta)) = \alpha + \beta \in M$ by what we have already shown. Thus M is an ideal.

It is clearly the unique maximal ideal of R since any ideal not properly contained in M must contain a unit, whence must be the entire ring.
Proof: Let R be a valuation ring of a field and let M denote the non-units of R.

Note that M consists of more than simply the element 0 since otherwise $R = K$.

Let $\alpha \in M$ and $\beta \in R$.

If $\alpha \beta$ is a unit then $\beta (\alpha \beta) - 1 = \alpha - 1 \in R$ so that α is a unit, contradicting our hypothesis. Thus $\alpha \beta \in M$.

Now suppose $\beta \in M$ and consider $\alpha + \beta \in R$.

If either α or β is 0 then clearly $\alpha + \beta \in M$, so suppose otherwise.

Since R is a valuation ring we may assume without loss of generality that $\alpha/\beta \in R$.

Then $1 + (\alpha/\beta) \in R$ and so $\beta (1 + (\alpha/\beta)) = \alpha + \beta \in M$ by what we have already shown.

Thus M is an ideal.

It is clearly the unique maximal ideal of R since any ideal not properly contained in M must contain a unit, whence must be the entire ring.
Proof: Let R be a valuation ring of a field and let \mathcal{M} denote the non-units of R. Note that \mathcal{M} consists of more than simply the element 0.
Proof: Let R be a valuation ring of a field and let \mathcal{M} denote the non-units of R. Note that \mathcal{M} consists of more than simply the element 0 since otherwise $R = K$.

Let $\alpha \in \mathcal{M}$ and $\beta \in R$. If $\alpha \beta$ is a unit then $\beta(\alpha \beta) - 1 = \alpha - 1 \in R$ so that α is a unit, contradicting our hypothesis. Thus $\alpha \beta \in \mathcal{M}$.

Now suppose $\beta \in \mathcal{M}$ and consider $\alpha + \beta \in R$. If either α or β is 0 then clearly $\alpha + \beta \in \mathcal{M}$, so suppose otherwise. Since R is a valuation ring we may assume without loss of generality that $\alpha / \beta \in R$. Then $1 + (\alpha / \beta) \in R$ and so $\beta(1 + (\alpha / \beta)) = \alpha + \beta \in \mathcal{M}$ by what we have already shown. Thus \mathcal{M} is an ideal. It is clearly the unique maximal ideal of R since any ideal not properly contained in \mathcal{M} must contain a unit, whence must be the entire ring.
Proof: Let R be a valuation ring of a field and let \mathcal{M} denote the non-units of R. Note that \mathcal{M} consists of more than simply the element 0 since otherwise $R = K$.

Let $\alpha \in \mathcal{M}$ and $\beta \in R$.

Proof: Let R be a valuation ring of a field and let \mathcal{M} denote the non-units of R. Note that \mathcal{M} consists of more than simply the element 0 since otherwise $R = K$.

Let $\alpha \in \mathcal{M}$ and $\beta \in R$. If $\alpha \beta$ is a unit
Proof: Let R be a valuation ring of a field and let \mathcal{M} denote the non-units of R. Note that \mathcal{M} consists of more than simply the element 0 since otherwise $R = K$.

Let $\alpha \in \mathcal{M}$ and $\beta \in R$. If $\alpha \beta$ is a unit then $\beta(\alpha \beta)^{-1} = \alpha^{-1} \in R$
Proof: Let R be a valuation ring of a field and let \mathcal{M} denote the non-units of R. Note that \mathcal{M} consists of more than simply the element 0 since otherwise $R = K$.

Let $\alpha \in \mathcal{M}$ and $\beta \in R$. If $\alpha \beta$ is a unit then $\beta(\alpha \beta)^{-1} = \alpha^{-1} \in R$ so that α is a unit,
Proof: Let R be a valuation ring of a field and let M denote the non-units of R. Note that M consists of more than simply the element 0 since otherwise $R = K$.

Let $\alpha \in M$ and $\beta \in R$. If $\alpha \beta$ is a unit then $\beta(\alpha \beta)^{-1} = \alpha^{-1} \in R$ so that α is a unit, contradicting our hypothesis.
Proof: Let R be a valuation ring of a field and let \mathcal{M} denote the non-units of R. Note that \mathcal{M} consists of more than simply the element 0 since otherwise $R = K$.

Let $\alpha \in \mathcal{M}$ and $\beta \in R$. If $\alpha \beta$ is a unit then $\beta(\alpha \beta)^{-1} = \alpha^{-1} \in R$ so that α is a unit, contradicting our hypothesis. Thus $\alpha \beta \in \mathcal{M}$.
Proof: Let R be a valuation ring of a field and let M denote the non-units of R. Note that M consists of more than simply the element 0 since otherwise $R = K$.

Let $\alpha \in M$ and $\beta \in R$. If $\alpha \beta$ is a unit then $\beta(\alpha \beta)^{-1} = \alpha^{-1} \in R$ so that α is a unit, contradicting our hypothesis. Thus $\alpha \beta \in M$.

Now suppose $\beta \in M$ and consider $\alpha + \beta \in R$.

Proof: Let R be a valuation ring of a field and let \mathcal{M} denote the non-units of R. Note that \mathcal{M} consists of more than simply the element 0 since otherwise $R = K$.

Let $\alpha \in \mathcal{M}$ and $\beta \in R$. If $\alpha \beta$ is a unit then $\beta(\alpha \beta)^{-1} = \alpha^{-1} \in R$ so that α is a unit, contradicting our hypothesis. Thus $\alpha \beta \in \mathcal{M}$.

Now suppose $\beta \in \mathcal{M}$ and consider $\alpha + \beta \in R$. If either α or β is 0
Proof: Let R be a valuation ring of a field and let \mathcal{M} denote the non-units of R. Note that \mathcal{M} consists of more than simply the element 0 since otherwise $R = K$.

Let $\alpha \in \mathcal{M}$ and $\beta \in R$. If $\alpha \beta$ is a unit then $\beta(\alpha \beta)^{-1} = \alpha^{-1} \in R$ so that α is a unit, contradicting our hypothesis. Thus $\alpha \beta \in \mathcal{M}$.

Now suppose $\beta \in \mathcal{M}$ and consider $\alpha + \beta \in R$. If either α or β is 0 then clearly $\alpha + \beta \in \mathcal{M}$,
Proof: Let R be a valuation ring of a field and let \mathcal{M} denote the non-units of R. Note that \mathcal{M} consists of more than simply the element 0 since otherwise $R = K$.

Let $\alpha \in \mathcal{M}$ and $\beta \in R$. If $\alpha\beta$ is a unit then $\beta(\alpha\beta)^{-1} = \alpha^{-1} \in R$ so that α is a unit, contradicting our hypothesis. Thus $\alpha\beta \in \mathcal{M}$.

Now suppose $\beta \in \mathcal{M}$ and consider $\alpha + \beta \in R$. If either α or β is 0 then clearly $\alpha + \beta \in \mathcal{M}$, so suppose otherwise.
Proof: Let R be a valuation ring of a field and let \mathcal{M} denote the non-units of R. Note that \mathcal{M} consists of more than simply the element 0 since otherwise $R = K$.

Let $\alpha \in \mathcal{M}$ and $\beta \in R$. If $\alpha \beta$ is a unit then $\beta(\alpha \beta)^{-1} = \alpha^{-1} \in R$ so that α is a unit, contradicting our hypothesis. Thus $\alpha \beta \in \mathcal{M}$.

Now suppose $\beta \in \mathcal{M}$ and consider $\alpha + \beta \in R$. If either α or β is 0 then clearly $\alpha + \beta \in \mathcal{M}$, so suppose otherwise. Since R is a valuation ring we may assume without loss of generality that $\alpha/\beta \in R$.
Proof: Let R be a valuation ring of a field and let \mathcal{M} denote the non-units of R. Note that \mathcal{M} consists of more than simply the element 0 since otherwise $R = K$.

Let $\alpha \in \mathcal{M}$ and $\beta \in R$. If $\alpha \beta$ is a unit then $\beta(\alpha \beta)^{-1} = \alpha^{-1} \in R$ so that α is a unit, contradicting our hypothesis. Thus $\alpha \beta \in \mathcal{M}$.

Now suppose $\beta \in \mathcal{M}$ and consider $\alpha + \beta \in R$. If either α or β is 0 then clearly $\alpha + \beta \in \mathcal{M}$, so suppose otherwise. Since R is a valuation ring we may assume without loss of generality that $\alpha/\beta \in R$. Then $1 + (\alpha/\beta) \in R$.
Proof: Let R be a valuation ring of a field and let \mathcal{M} denote the non-units of R. Note that \mathcal{M} consists of more than simply the element 0 since otherwise $R = K$.

Let $\alpha \in \mathcal{M}$ and $\beta \in R$. If $\alpha \beta$ is a unit then $\beta(\alpha \beta)^{-1} = \alpha^{-1} \in R$ so that α is a unit, contradicting our hypothesis. Thus $\alpha \beta \in \mathcal{M}$.

Now suppose $\beta \in \mathcal{M}$ and consider $\alpha + \beta \in R$. If either α or β is 0 then clearly $\alpha + \beta \in \mathcal{M}$, so suppose otherwise. Since R is a valuation ring we may assume without loss of generality that $\alpha/\beta \in R$. Then $1 + (\alpha/\beta) \in R$ and so $\beta \left(1 + (\alpha/\beta)\right) = \alpha + \beta \in \mathcal{M}$.
Proof: Let R be a valuation ring of a field and let \mathcal{M} denote the non-units of R. Note that \mathcal{M} consists of more than simply the element 0 since otherwise $R = K$.

Let $\alpha \in \mathcal{M}$ and $\beta \in R$. If $\alpha \beta$ is a unit then $\beta(\alpha \beta)^{-1} = \alpha^{-1} \in R$ so that α is a unit, contradicting our hypothesis. Thus $\alpha \beta \in \mathcal{M}$.

Now suppose $\beta \in \mathcal{M}$ and consider $\alpha + \beta \in R$. If either α or β is 0 then clearly $\alpha + \beta \in \mathcal{M}$, so suppose otherwise. Since R is a valuation ring we may assume without loss of generality that $\alpha/\beta \in R$. Then $1 + (\alpha/\beta) \in R$ and so $\beta(1 + (\alpha/\beta)) = \alpha + \beta \in \mathcal{M}$ by what we have already shown.
Proof: Let R be a valuation ring of a field and let \mathcal{M} denote the non-units of R. Note that \mathcal{M} consists of more than simply the element 0 since otherwise $R = K$.

Let $\alpha \in \mathcal{M}$ and $\beta \in R$. If $\alpha \beta$ is a unit then $\beta(\alpha \beta)^{-1} = \alpha^{-1} \in R$ so that α is a unit, contradicting our hypothesis. Thus $\alpha \beta \notin \mathcal{M}$.

Now suppose $\beta \in \mathcal{M}$ and consider $\alpha + \beta \in R$. If either α or β is 0 then clearly $\alpha + \beta \notin \mathcal{M}$, so suppose otherwise. Since R is a valuation ring we may assume without loss of generality that $\alpha/\beta \in R$. Then $1 + (\alpha/\beta) \in R$ and so $\beta(1 + (\alpha/\beta)) = \alpha + \beta \in \mathcal{M}$ by what we have already shown. Thus \mathcal{M} is an ideal.
Proof: Let \(R \) be a valuation ring of a field and let \(M \) denote the non-units of \(R \). Note that \(M \) consists of more than simply the element 0 since otherwise \(R = K \).

Let \(\alpha \in M \) and \(\beta \in R \). If \(\alpha \beta \) is a unit then \(\beta(\alpha \beta)^{-1} = \alpha^{-1} \in R \) so that \(\alpha \) is a unit, contradicting our hypothesis. Thus \(\alpha \beta \in M \).

Now suppose \(\beta \in M \) and consider \(\alpha + \beta \in R \). If either \(\alpha \) or \(\beta \) is 0 then clearly \(\alpha + \beta \in M \), so suppose otherwise. Since \(R \) is a valuation ring we may assume without loss of generality that \(\alpha / \beta \in R \). Then \(1 + (\alpha / \beta) \in R \) and so \(\beta(1 + (\alpha / \beta)) = \alpha + \beta \in M \) by what we have already shown. Thus \(M \) is an ideal.

It is clearly the unique maximal ideal of \(R \).
Proof: Let R be a valuation ring of a field and let M denote the non-units of R. Note that M consists of more than simply the element 0 since otherwise $R = K$.

Let $\alpha \in M$ and $\beta \in R$. If $\alpha \beta$ is a unit then $\beta(\alpha \beta)^{-1} = \alpha^{-1} \in R$ so that α is a unit, contradicting our hypothesis. Thus $\alpha \beta \in M$.

Now suppose $\beta \in M$ and consider $\alpha + \beta \in R$. If either α or β is 0 then clearly $\alpha + \beta \in M$, so suppose otherwise. Since R is a valuation ring we may assume without loss of generality that $\alpha/\beta \in R$. Then $1 + (\alpha/\beta) \in R$ and so $\beta(1 + (\alpha/\beta)) = \alpha + \beta \in M$ by what we have already shown. Thus M is an ideal.

It is clearly the unique maximal ideal of R since any ideal not properly contained in M must contain a unit,
Proof: Let R be a valuation ring of a field and let \mathcal{M} denote the non-units of R. Note that \mathcal{M} consists of more than simply the element 0 since otherwise $R = K$.

Let $\alpha \in \mathcal{M}$ and $\beta \in R$. If $\alpha \beta$ is a unit then $\beta(\alpha \beta)^{-1} = \alpha^{-1} \in R$ so that α is a unit, contradicting our hypothesis. Thus $\alpha \beta \in \mathcal{M}$.

Now suppose $\beta \in \mathcal{M}$ and consider $\alpha + \beta \in R$. If either α or β is 0 then clearly $\alpha + \beta \in \mathcal{M}$, so suppose otherwise. Since R is a valuation ring we may assume without loss of generality that $\alpha/\beta \in R$. Then $1 + (\alpha/\beta) \in R$ and so $\beta(1 + (\alpha/\beta)) = \alpha + \beta \in \mathcal{M}$ by what we have already shown. Thus \mathcal{M} is an ideal.

It is clearly the unique maximal ideal of R since any ideal not properly contained in \mathcal{M} must contain a unit, whence must be the entire ring.
Lemma (2)

Suppose R is a valuation ring with the property that, given any principal ideal $\alpha R \neq \{0\}$, the number of principal ideals in an ascending chain $\alpha R \subseteq \beta R \subseteq \cdots$ is bounded by a function of α. Then R is a principal ideal domain.

Proof:
Let R be a valuation ring. By Lemma 1 it is a local ring; denote the maximal ideal by M and let $\alpha_1 \in M$. If M is not principal there is an $\alpha_2 \in M$ that isn't in the principal ideal generated by α_1. This implies that $\alpha_2 / \alpha_1 \not\in R$, so that its inverse $\alpha_1 / \alpha_2 \in R$. Obviously this element isn't a unit, hence $\alpha_1 R \subset \alpha_2 R$. We repeat this process, getting an infinite ascending chain of principal ideals $\alpha_1 R \subset \alpha_2 R \subset \cdots$ which contradicts the hypothesis on R. Thus M is principal. Write $M = \pi R$.
<table>
<thead>
<tr>
<th>Lemma (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suppose R is a valuation ring with the property that,</td>
</tr>
</tbody>
</table>

Let R be a valuation ring. By Lemma 1, it is a local ring; denote the maximal ideal by M and let $\alpha_1 \in M$. If M is not principal, there is an $\alpha_2 \in M$ that isn’t in the principal ideal generated by α_1. This implies that $\alpha_2/\alpha_1 \not\in R$, so that its inverse $\alpha_1/\alpha_2 \in R$. Obviously, this element isn’t a unit, hence $\alpha_1 \subseteq \alpha_2 \subseteq \cdots$ which contradicts the hypothesis on R. Thus M is principal. Write $M = \pi R$.

Math 681, Wednesday, February 24
Lemma (2)

Suppose R is a valuation ring with the property that, given any principal ideal $\alpha R \neq \{0\}$,
Lemma (2)

Suppose R is a valuation ring with the property that, given any principal ideal $\alpha R \neq \{0\}$, the number of principal ideals in an ascending chain

$$\alpha R \subsetneq \beta R \subsetneq \cdots$$

is bounded by a function of α. Then R is a principal ideal domain.

Proof:

Let R be a valuation ring. By Lemma 1 it is a local ring; denote the maximal ideal by M and let $\alpha_1 \in M$. If M is not principal there is an $\alpha_2 \in M$ that isn't in the principal ideal generated by α_1. This implies that $\alpha_2/\alpha_1 \not\in R$, so that its inverse $\alpha_1/\alpha_2 \in R$. Obviously this element isn't a unit, hence $\alpha_1 R \subsetneq \alpha_2 R \subsetneq \cdots$ which contradicts the hypothesis on R. Thus M is principal. Write $M = \pi R$.

Math 681, Wednesday, February 24
Lemma (2)

Suppose R is a valuation ring with the property that, given any principal ideal $\alpha R \neq \{0\}$, the number of principal ideals in an ascending chain

$$\alpha R \subsetneq \beta R \subsetneq \cdots$$

is bounded by a function of α.

Proof:
Let R be a valuation ring. By Lemma 1 it is a local ring; denote the maximal ideal by M and let $\alpha_1 \in M$.

If M is not principal there is an $\alpha_2 \in M$ that isn't in the principal ideal generated by α_1.

This implies that $\alpha_2/\alpha_1 \not\in R$, so that its inverse $\alpha_1/\alpha_2 \in R$.

Obviously this element isn't a unit, hence $\alpha_1 R \subsetneq \alpha_2 R \subsetneq \cdots$

We repeat this process, getting an infinite ascending chain of principal ideals $\alpha_1 R \subsetneq \alpha_2 R \subsetneq \cdots$ which contradicts the hypothesis on R.

Thus M is principal.

Write $M = \pi R$.

Math 681, Wednesday, February 24 2021
Lemma (2)

Suppose R is a valuation ring with the property that, given any principal ideal $\alpha R \neq \{0\}$, the number of principal ideals in an ascending chain

$$\alpha R \subsetneq \beta R \subsetneq \cdots$$

is bounded by a function of α. Then R is a principal ideal domain.
Lemma (2)

Suppose R is a valuation ring with the property that, given any principal ideal $\alpha R \neq \{0\}$, the number of principal ideals in an ascending chain

$$
\alpha R \subsetneq \beta R \subsetneq \cdots
$$

is bounded by a function of α. Then R is a principal ideal domain.

Proof:
Lemma (2)

Suppose R is a valuation ring with the property that, given any principal ideal $\alpha R \neq \{0\}$, the number of principal ideals in an ascending chain

$$\alpha R \subsetneq \beta R \subsetneq \cdots$$

is bounded by a function of α. Then R is a principal ideal domain.

Proof: Let R be a valuation ring.
Lemma (2)

Suppose R is a valuation ring with the property that, given any principal ideal $\alpha R \neq \{0\}$, the number of principal ideals in an ascending chain

$$\alpha R \subsetneq \beta R \subsetneq \cdots$$

is bounded by a function of α. Then R is a principal ideal domain.

Proof: Let R be a valuation ring. By Lemma 1 it is a local ring;
Lemma (2)

Suppose \(R \) is a valuation ring with the property that, given any principal ideal \(\alpha R \neq \{0\} \), the number of principal ideals in an ascending chain

\[
\alpha R \subsetneq \beta R \subsetneq \cdots
\]

is bounded by a function of \(\alpha \). Then \(R \) is a principal ideal domain.

Proof: Let \(R \) be a valuation ring. By Lemma 1 it is a local ring; denote the maximal ideal by \(M \) and let \(\alpha_1 \in M \).
Lemma (2)

Suppose R is a valuation ring with the property that, given any principal ideal $\alpha R \neq \{0\}$, the number of principal ideals in an ascending chain

$$\alpha R \subsetneq \beta R \subsetneq \cdots$$

is bounded by a function of α. Then R is a principal ideal domain.

Proof: Let R be a valuation ring. By Lemma 1 it is a local ring; denote the maximal ideal by \mathcal{M} and let $\alpha_1 \in \mathcal{M}$.

If \mathcal{M} is not principal
Lemma (2)

Suppose \(R \) is a valuation ring with the property that, given any principal ideal \(\alpha R \neq \{0\} \), the number of principal ideals in an ascending chain

\[
\alpha R \subsetneq \beta R \subsetneq \cdots
\]
is bounded by a function of \(\alpha \). Then \(R \) is a principal ideal domain.

Proof: Let \(R \) be a valuation ring. By Lemma 1 it is a local ring; denote the maximal ideal by \(M \) and let \(\alpha_1 \in M \).

If \(M \) is not principal there is an \(\alpha_2 \in M \) that isn’t in the principal ideal generated by \(\alpha_1 \).
Lemma (2)

Suppose R is a valuation ring with the property that, given any principal ideal $\alpha R \neq \{0\}$, the number of principal ideals in an ascending chain

$$\alpha R \subsetneq \beta R \subsetneq \cdots$$

is bounded by a function of α. Then R is a principal ideal domain.

Proof: Let R be a valuation ring. By Lemma 1 it is a local ring; denote the maximal ideal by M and let $\alpha_1 \in M$.

If M is not principal there is an $\alpha_2 \in M$ that isn’t in the principal ideal generated by α_1. This implies that $\alpha_2/\alpha_1 \notin R$,

Lemma (2)

Suppose R is a valuation ring with the property that, given any principal ideal $\alpha R \neq \{0\}$, the number of principal ideals in an ascending chain

$$\alpha R \subsetneq \beta R \subsetneq \cdots$$

is bounded by a function of α. Then R is a principal ideal domain.

Proof: Let R be a valuation ring. By Lemma 1 it is a local ring; denote the maximal ideal by M and let $\alpha_1 \in M$.

If M is not principal there is an $\alpha_2 \in M$ that isn’t in the principal ideal generated by α_1. This implies that $\alpha_2/\alpha_1 \notin R$, so that its inverse $\alpha_1/\alpha_2 \in R$.

Math 681, Wednesday, February 24

February 24, 2021
Lemma (2)

Suppose R is a valuation ring with the property that, given any principal ideal $\alpha R \neq \{0\}$, the number of principal ideals in an ascending chain

$$\alpha R \subsetneq \beta R \subsetneq \cdots$$

is bounded by a function of α. Then R is a principal ideal domain.

Proof: Let R be a valuation ring. By Lemma 1 it is a local ring; denote the maximal ideal by M and let $\alpha_1 \in M$.

If M is not principal there is an $\alpha_2 \in M$ that isn’t in the principal ideal generated by α_1. This implies that $\alpha_2/\alpha_1 \notin R$, so that its inverse $\alpha_1/\alpha_2 \in R$. Obviously this element isn’t a unit,
Lemma (2)

Suppose R is a valuation ring with the property that, given any principal ideal $\alpha R \neq \{0\}$, the number of principal ideals in an ascending chain

$$\alpha R \subsetneq \beta R \subsetneq \cdots$$

is bounded by a function of α. Then R is a principal ideal domain.

Proof: Let R be a valuation ring. By Lemma 1 it is a local ring; denote the maximal ideal by M and let $\alpha_1 \in M$.

If M is not principal there is an $\alpha_2 \in M$ that isn’t in the principal ideal generated by α_1. This implies that $\alpha_2/\alpha_1 \notin R$, so that its inverse $\alpha_1/\alpha_2 \in R$. Obviously this element isn’t a unit, hence $\alpha_1 R \subsetneq \alpha_2 R$.
Lemma (2)

Suppose R is a valuation ring with the property that, given any principal ideal $\alpha R \neq \{0\}$, the number of principal ideals in an ascending chain

$$\alpha R \subsetneq \beta R \subsetneq \cdots$$

is bounded by a function of α. Then R is a principal ideal domain.

Proof: Let R be a valuation ring. By Lemma 1 it is a local ring; denote the maximal ideal by \mathcal{M} and let $\alpha_1 \in \mathcal{M}$.

If \mathcal{M} is not principal there is an $\alpha_2 \in \mathcal{M}$ that isn’t in the principal ideal generated by α_1. This implies that $\alpha_2/\alpha_1 \notin R$, so that its inverse $\alpha_1/\alpha_2 \in R$. Obviously this element isn’t a unit, hence $\alpha_1 R \subsetneq \alpha_2 R$.

We repeat this process, getting an infinite ascending chain of principal ideals.
Lemma (2)

Suppose \(R \) *is a valuation ring with the property that, given any principal ideal* \(\alpha R \neq \{0\} \), *the number of principal ideals in an ascending chain*

\[
\alpha R \subsetneq \beta R \subsetneq \cdots
\]

is bounded by a function of \(\alpha \). *Then* \(R \) *is a principal ideal domain.*

Proof: Let \(R \) *be a valuation ring. By Lemma 1 it is a local ring; denote the maximal ideal by* \(\mathcal{M} \) *and let* \(\alpha_1 \in \mathcal{M} \).

If \(\mathcal{M} \) is not principal there is an \(\alpha_2 \in \mathcal{M} \) that isn’t in the principal ideal generated by \(\alpha_1 \). This implies that \(\alpha_2/\alpha_1 \notin R \), so that its inverse \(\alpha_1/\alpha_2 \in R \). Obviously this element isn’t a unit, hence \(\alpha_1 R \subsetneq \alpha_2 R \).

We repeat this process, getting an infinite ascending chain of principal ideals

\[
\alpha_1 R \subsetneq \alpha_2 R \subsetneq \cdots
\]
Lemma (2)

Suppose R is a valuation ring with the property that, given any principal ideal $\alpha R \neq \{0\}$, the number of principal ideals in an ascending chain

$$\alpha R \subsetneq \beta R \subsetneq \cdots$$

is bounded by a function of α. Then R is a principal ideal domain.

Proof: Let R be a valuation ring. By Lemma 1 it is a local ring; denote the maximal ideal by M and let $\alpha_1 \in M$.

If M is not principal there is an $\alpha_2 \in M$ that isn’t in the principal ideal generated by α_1. This implies that $\alpha_2/\alpha_1 \not\in R$, so that its inverse $\alpha_1/\alpha_2 \in R$. Obviously this element isn’t a unit, hence $\alpha_1 R \subsetneq \alpha_2 R$.

We repeat this process, getting an infinite ascending chain of principal ideals

$$\alpha_1 R \subsetneq \alpha_2 R \subsetneq \cdots$$

which contradicts the hypothesis on R.
Lemma (2)

Suppose R is a valuation ring with the property that, given any principal ideal $\alpha R \neq \{0\}$, the number of principal ideals in an ascending chain

$$\alpha R \subsetneq \beta R \subsetneq \cdots$$

is bounded by a function of α. Then R is a principal ideal domain.

Proof: Let R be a valuation ring. By Lemma 1 it is a local ring; denote the maximal ideal by \mathcal{M} and let $\alpha_1 \in \mathcal{M}$.

If \mathcal{M} is not principal there is an $\alpha_2 \in \mathcal{M}$ that isn’t in the principal ideal generated by α_1. This implies that $\alpha_2/\alpha_1 \notin R$, so that its inverse $\alpha_1/\alpha_2 \in R$. Obviously this element isn’t a unit, hence $\alpha_1 R \subsetneq \alpha_2 R$.

We repeat this process, getting an infinite ascending chain of principal ideals

$$\alpha_1 R \subsetneq \alpha_2 R \subsetneq \cdots$$

which contradicts the hypothesis on R. Thus \mathcal{M} is principal.
Lemma (2)

Suppose R is a valuation ring with the property that, given any principal ideal $\alpha R \neq \{0\}$, the number of principal ideals in an ascending chain

$$\alpha R \subsetneq \beta R \subsetneq \cdots$$

is bounded by a function of α. Then R is a principal ideal domain.

Proof: Let R be a valuation ring. By Lemma 1 it is a local ring; denote the maximal ideal by \mathcal{M} and let $\alpha_1 \in \mathcal{M}$.

If \mathcal{M} is not principal there is an $\alpha_2 \in \mathcal{M}$ that isn’t in the principal ideal generated by α_1. This implies that $\alpha_2/\alpha_1 \notin R$, so that its inverse $\alpha_1/\alpha_2 \in R$. Obviously this element isn’t a unit, hence $\alpha_1 R \subsetneq \alpha_2 R$.

We repeat this process, getting an infinite ascending chain of principal ideals

$$\alpha_1 R \subsetneq \alpha_2 R \subsetneq \cdots$$

which contradicts the hypothesis on R. Thus \mathcal{M} is principal. Write $\mathcal{M} = \pi R$.
We claim that every non-zero \(\alpha \in R \) has a unique representation of the form

\[\alpha = u \pi^n \]

for some unit \(u \) and non-negative integer \(n \).

This is obvious if \(\alpha \) is a unit itself, so suppose \(\alpha \in M \). Then \(\alpha = \pi^m \beta \) for some \(\beta \in R \) not zero. If \(\beta \) is a unit, then we have such a representation of \(\alpha \), and any such representation is clearly unique.

If \(\beta \in M \), by hypothesis the number of principal ideals in an ascending chain \(\alpha R \subseteq \pi^m R \subseteq \pi^{m-1} R \subseteq \cdots \subseteq \pi R \) is bounded by a function of \(\alpha \) so that there is a maximal exponent \(m \) such that \(\alpha \in \pi^m R \).

Since \(\alpha \not\in \pi^{m+1} R \) we see that \(\alpha = u \pi^m \) for some \(u \not\in \pi R = M \), so that \(u \) is a unit.

Finally, we show that all ideals are principal. Let \(I \) be a non-zero ideal contained in \(M \) (otherwise it is trivially principal). By the above, every non-zero element \(\alpha \in I \) is of the form \(\alpha = u \pi^m \) for some unit and some non-negative integer \(m \).

Let \(m_0 \) be the least such integer occurring here and choose \(\alpha_0 \in I \) of the form \(\alpha_0 = u_0 \pi^{m_0} \) for some unit \(u_0 \).

Then \(\alpha_0 R = \pi^{m_0} R \) and all non-zero \(\alpha \in I \) satisfy \(\alpha = u \pi^m \in \pi^{m_0} R \) since \(m \geq m_0 \) by construction.

Therefore \(I = \alpha_0 R \).
We claim that every non-zero $\alpha \in R$ has a unique representation of the form $\alpha = u \pi^n$ for some unit u and non-negative integer n.
We claim that every non-zero $\alpha \in R$ has a unique representation of the form $\alpha = u\pi^n$ for some unit u and non-negative integer n. This is obvious if α is a unit itself,
We claim that every non-zero $\alpha \in R$ has a unique representation of the form $\alpha = u\pi^n$ for some unit u and non-negative integer n. This is obvious if α is a unit itself, so suppose $\alpha \in M$.

Then $\alpha = \pi^m \beta$ for some $\beta \in R$ not zero. If β is a unit, then we have such a representation of α, and any such representation is clearly unique. If $\beta \in M$, by hypothesis the number of principal ideals in an ascending chain $\alpha R \subseteq \pi^m R \subseteq \pi^{m-1} R \subseteq \cdots \subseteq \pi R$ is bounded by a function of α so that there is a maximal exponent m such that $\alpha \in \pi^m R$. Since $\alpha \not\in \pi^{m+1} R$ we see that $\alpha = u\pi^m$ for some $u \not\in \pi R = M$, so that u is a unit.

Finally, we show that all ideals are principal. Let I be a non-zero ideal contained in M (otherwise it is trivially principal). By the above, every non-zero element $\alpha \in I$ is of the form $u\pi^m$ for some unit and some non-negative integer m. Let m_0 be the least such integer occurring here and choose $\alpha_0 \in I$ of the form $\alpha_0 = u_0\pi^{m_0}$ for some unit u_0. Then $\alpha_0 R = \pi^{m_0} R$ and all non-zero $\alpha \in I$ satisfy $\alpha = u\pi^m \in \pi^{m_0} R$ since $m \geq m_0$ by construction. Therefore $I = \alpha_0 R$.

Math 681, Wednesday, February 24
We claim that every non-zero $\alpha \in R$ has a unique representation of the form $\alpha = u\pi^n$ for some unit u and non-negative integer n. This is obvious if α is a unit itself, so suppose $\alpha \in \mathcal{M}$. Then $\alpha = \pi^m\beta$ for some $\beta \in R$ not zero.
We claim that every non-zero $\alpha \in R$ has a unique representation of the form $\alpha = u\pi^n$ for some unit u and non-negative integer n. This is obvious if α is a unit itself, so suppose $\alpha \in \mathcal{M}$. Then $\alpha = \pi^m\beta$ for some $\beta \in R$ not zero. If β is a unit,
We claim that every non-zero $\alpha \in R$ has a unique representation of the form $\alpha = u\pi^n$ for some unit u and non-negative integer n. This is obvious if α is a unit itself, so suppose $\alpha \in M$. Then $\alpha = \pi^m\beta$ for some $\beta \in R$ not zero. If β is a unit, then we have such a representation of α,
We claim that every non-zero \(\alpha \in R \) has a unique representation of the form \(\alpha = u\pi^n \) for some unit \(u \) and non-negative integer \(n \). This is obvious if \(\alpha \) is a unit itself, so suppose \(\alpha \in \mathfrak{M} \). Then \(\alpha = \pi^m \beta \) for some \(\beta \in R \) not zero. If \(\beta \) is a unit, then we have such a representation of \(\alpha \), and any such representation is clearly unique.
We claim that every non-zero $\alpha \in R$ has a unique representation of the form $\alpha = u\pi^n$ for some unit u and non-negative integer n. This is obvious if α is a unit itself, so suppose $\alpha \in M$. Then $\alpha = \pi^m\beta$ for some $\beta \in R$ not zero. If β is a unit, then we have such a representation of α, and any such representation is clearly unique. If $\beta \in M$,
We claim that every non-zero $\alpha \in R$ has a unique representation of the form $\alpha = u\pi^n$ for some unit u and non-negative integer n. This is obvious if α is a unit itself, so suppose $\alpha \in M$. Then $\alpha = \pi^m \beta$ for some $\beta \in R$ not zero. If β is a unit, then we have such a representation of α, and any such representation is clearly unique. If $\beta \in M$, by hypothesis the number of principal ideals in an ascending chain

$$\alpha R \subsetneq \pi^m R \subsetneq \pi^{m-1} R \subsetneq \cdots \subsetneq \pi R$$
We claim that every non-zero $\alpha \in R$ has a unique representation of the form $\alpha = u\pi^n$ for some unit u and non-negative integer n. This is obvious if α is a unit itself, so suppose $\alpha \in M$. Then $\alpha = \pi^m \beta$ for some $\beta \in R$ not zero. If β is a unit, then we have such a representation of α, and any such representation is clearly unique. If $\beta \in M$, by hypothesis the number of principal ideals in an ascending chain

$$\alpha R \subsetneq \pi^m R \subsetneq \pi^{m-1} R \subsetneq \cdots \subsetneq \pi R$$

is bounded by a function of α
We claim that every non-zero \(\alpha \in R \) has a unique representation of the form \(\alpha = u \pi^n \) for some unit \(u \) and non-negative integer \(n \). This is obvious if \(\alpha \) is a unit itself, so suppose \(\alpha \in \mathcal{M} \). Then \(\alpha = \pi^m \beta \) for some \(\beta \in R \) not zero. If \(\beta \) is a unit, then we have such a representation of \(\alpha \), and any such representation is clearly unique. If \(\beta \in \mathcal{M} \), by hypothesis the number of principal ideals in an ascending chain

\[
\alpha R \subsetneq \pi^m R \subsetneq \pi^{m-1} R \subsetneq \cdots \subsetneq \pi R
\]

is bounded by a function of \(\alpha \) so that there is a maximal exponent \(m \)
We claim that every non-zero $\alpha \in R$ has a unique representation of the form $\alpha = u\pi^n$ for some unit u and non-negative integer n. This is obvious if α is a unit itself, so suppose $\alpha \in \mathcal{M}$. Then $\alpha = \pi^m \beta$ for some $\beta \in R$ not zero. If β is a unit, then we have such a representation of α, and any such representation is clearly unique. If $\beta \in \mathcal{M}$, by hypothesis the number of principal ideals in an ascending chain

$$\alpha R \subsetneq \pi^m R \subsetneq \pi^{m-1} R \subsetneq \cdots \subsetneq \pi R$$

is bounded by a function of α so that there is a maximal exponent m such that $\alpha \in \pi^m R$.

Finally, we show that all ideals are principal. Let I be a non-zero ideal contained in \mathcal{M} (otherwise it is trivially principal). By the above, every non-zero element $\alpha \in I$ is of the form $u\pi^m$ for some unit and some non-negative integer m. Let m_0 be the least such integer occurring here and choose $\alpha_0 \in I$ of the form $\alpha_0 = u_0\pi^{m_0}$ for some unit u_0. Then $\alpha_0 R = \pi^{m_0} R$ and all non-zero $\alpha \in I$ satisfy $\alpha = u\pi^m \in \pi^{m_0} R$ since $m \geq m_0$ by construction. Therefore $I = \alpha_0 R$.

Math 681, Wednesday, February 24 February 24, 2021
We claim that every non-zero $\alpha \in R$ has a unique representation of the form $\alpha = u\pi^n$ for some unit u and non-negative integer n. This is obvious if α is a unit itself, so suppose $\alpha \in \mathcal{M}$. Then $\alpha = \pi^m \beta$ for some $\beta \in R$ not zero. If β is a unit, then we have such a representation of α, and any such representation is clearly unique. If $\beta \in \mathcal{M}$, by hypothesis the number of principal ideals in an ascending chain

$$\alpha R \subsetneq \pi^m R \subsetneq \pi^{m-1} R \subsetneq \cdots \subsetneq \pi R$$

is bounded by a function of α so that there is a maximal exponent m such that $\alpha \in \pi^m R$. Since $\alpha \notin \pi^{m+1} R$
We claim that every non-zero $\alpha \in R$ has a unique representation of the form $\alpha = u\pi^n$ for some unit u and non-negative integer n. This is obvious if α is a unit itself, so suppose $\alpha \in M$. Then $\alpha = \pi^m \beta$ for some $\beta \in R$ not zero. If β is a unit, then we have such a representation of α, and any such representation is clearly unique. If $\beta \in M$, by hypothesis the number of principal ideals in an ascending chain

$$\alpha R \subsetneq \pi^m R \subsetneq \pi^{m-1} R \subsetneq \cdots \subsetneq \pi R$$

is bounded by a function of α so that there is a maximal exponent m such that $\alpha \in \pi^m R$. Since $\alpha \not\subseteq \pi^{m+1} R$ we see that $\alpha = u\pi^m$ for some $u \not\in \pi R = M$,

We claim that every non-zero $\alpha \in R$ has a unique representation of the form $\alpha = u\pi^n$ for some unit u and non-negative integer n. This is obvious if α is a unit itself, so suppose $\alpha \in \mathbb{M}$. Then $\alpha = \pi^m\beta$ for some $\beta \in R$ not zero. If β is a unit, then we have such a representation of α, and any such representation is clearly unique. If $\beta \in \mathbb{M}$, by hypothesis the number of principal ideals in an ascending chain

$$\alpha R \not\subseteq \pi^m R \not\subseteq \pi^{m-1} R \not\subseteq \cdots \not\subseteq \pi R$$

is bounded by a function of α so that there is a maximal exponent m such that $\alpha \in \pi^m R$. Since $\alpha \not\in \pi^{m+1} R$ we see that $\alpha = u\pi^m$ for some $u \notin \pi R = \mathbb{M}$, so that u is a unit.
We claim that every non-zero $\alpha \in R$ has a unique representation of the form $\alpha = u\pi^n$ for some unit u and non-negative integer n. This is obvious if α is a unit itself, so suppose $\alpha \in \mathcal{M}$. Then $\alpha = \pi^m \beta$ for some $\beta \in R$ not zero. If β is a unit, then we have such a representation of α, and any such representation is clearly unique. If $\beta \in \mathcal{M}$, by hypothesis the number of principal ideals in an ascending chain

$$\alpha R \subsetneq \pi^m R \subsetneq \pi^{m-1} R \subsetneq \cdots \subsetneq \pi R$$

is bounded by a function of α so that there is a maximal exponent m such that $\alpha \in \pi^m R$. Since $\alpha \notin \pi^{m+1} R$ we see that $\alpha = u\pi^m$ for some $u \notin \pi R = \mathcal{M}$, so that u is a unit.

Finally, we show that all ideals are principal.
We claim that every non-zero $\alpha \in R$ has a unique representation of the form $\alpha = u\pi^n$ for some unit u and non-negative integer n. This is obvious if α is a unit itself, so suppose $\alpha \in M$. Then $\alpha = \pi^m \beta$ for some $\beta \in R$ not zero. If β is a unit, then we have such a representation of α, and any such representation is clearly unique. If $\beta \in M$, by hypothesis the number of principal ideals in an ascending chain

$$\alpha R \subsetneq \pi^m R \subsetneq \pi^{m-1} R \subsetneq \cdots \subsetneq \pi R$$

is bounded by a function of α so that there is a maximal exponent m such that $\alpha \in \pi^m R$. Since $\alpha \not\in \pi^{m+1} R$ we see that $\alpha = u\pi^m$ for some $u \not\in \pi R = M$, so that u is a unit.

Finally, we show that all ideals are principal.

Let I be a non-zero ideal contained in M
We claim that every non-zero $\alpha \in R$ has a unique representation of the form $\alpha = u\pi^n$ for some unit u and non-negative integer n. This is obvious if α is a unit itself, so suppose $\alpha \in \mathcal{M}$. Then $\alpha = \pi^m \beta$ for some $\beta \in R$ not zero. If β is a unit, then we have such a representation of α, and any such representation is clearly unique. If $\beta \in \mathcal{M}$, by hypothesis the number of principal ideals in an ascending chain

$$\alpha R \subsetneq \pi^m R \subsetneq \pi^{m-1} R \subsetneq \cdots \subsetneq \pi R$$

is bounded by a function of α so that there is a maximal exponent m such that $\alpha \in \pi^m R$. Since $\alpha \notin \pi^{m+1} R$ we see that $\alpha = u\pi^m$ for some $u \notin \pi R = \mathcal{M}$, so that u is a unit.

Finally, we show that all ideals are principal.

Let I be a non-zero ideal contained in \mathcal{M} (otherwise it is trivially principal).
We claim that every non-zero \(\alpha \in R \) has a unique representation of the form \(\alpha = u\pi^n \) for some unit \(u \) and non-negative integer \(n \). This is obvious if \(\alpha \) is a unit itself, so suppose \(\alpha \in \mathcal{M} \). Then \(\alpha = \pi^m\beta \) for some \(\beta \in R \) not zero. If \(\beta \) is a unit, then we have such a representation of \(\alpha \), and any such representation is clearly unique. If \(\beta \in \mathcal{M} \), by hypothesis the number of principal ideals in an ascending chain

\[
\alpha R \not\subseteq \pi^m R \not\subseteq \pi^{m-1} R \not\subseteq \cdots \not\subseteq \pi R
\]

is bounded by a function of \(\alpha \) so that there is a maximal exponent \(m \) such that \(\alpha \in \pi^m R \). Since \(\alpha \not\in \pi^{m+1} R \) we see that \(\alpha = u\pi^m \) for some \(u \not\in \pi R = \mathcal{M} \), so that \(u \) is a unit.

Finally, we show that all ideals are principal.

Let \(I \) be a non-zero ideal contained in \(\mathcal{M} \) (otherwise it is trivially principal). By the above,
We claim that every non-zero $\alpha \in R$ has a unique representation of the form $\alpha = u\pi^n$ for some unit u and non-negative integer n. This is obvious if α is a unit itself, so suppose $\alpha \in \mathcal{M}$. Then $\alpha = \pi^m\beta$ for some $\beta \in R$ not zero. If β is a unit, then we have such a representation of α, and any such representation is clearly unique. If $\beta \in \mathcal{M}$, by hypothesis the number of principal ideals in an ascending chain

$$\alpha R \subsetneq \pi^m R \subsetneq \pi^{m-1} R \subsetneq \cdots \subsetneq \pi R$$

is bounded by a function of α so that there is a maximal exponent m such that $\alpha \in \pi^m R$. Since $\alpha \not\in \pi^{m+1} R$ we see that $\alpha = u\pi^m$ for some $u \not\in \pi R = \mathcal{M}$, so that u is a unit.

Finally, we show that all ideals are principal.

Let I be a non-zero ideal contained in \mathcal{M} (otherwise it is trivially principal). By the above, every non-zero element $\alpha \in I$ is of the form $u\pi^m$ for some unit and some non-negative integer m.
We claim that every non-zero $\alpha \in R$ has a unique representation of the form $\alpha = u\pi^n$ for some unit u and non-negative integer n. This is obvious if α is a unit itself, so suppose $\alpha \in \mathcal{M}$. Then $\alpha = \pi^m \beta$ for some $\beta \in R$ not zero. If β is a unit, then we have such a representation of α, and any such representation is clearly unique. If $\beta \in \mathcal{M}$, by hypothesis the number of principal ideals in an ascending chain

\[\alpha R \subsetneq \pi^m R \subsetneq \pi^{m-1} R \subsetneq \cdots \subsetneq \pi R \]

is bounded by a function of α so that there is a maximal exponent m such that $\alpha \in \pi^m R$. Since $\alpha \notin \pi^{m+1} R$ we see that $\alpha = u\pi^m$ for some $u \notin \pi R = \mathcal{M}$, so that u is a unit.

Finally, we show that all ideals are principal.

Let I be a non-zero ideal contained in \mathcal{M} (otherwise it is trivially principal). By the above, every non-zero element $\alpha \in I$ is of the form $u\pi^m$ for some unit and some non-negative integer m. Let m_0 be the least such integer occurring here.
We claim that every non-zero $\alpha \in R$ has a unique representation of the form $\alpha = u \pi^n$ for some unit u and non-negative integer n. This is obvious if α is a unit itself, so suppose $\alpha \in \mathcal{M}$. Then $\alpha = \pi^m \beta$ for some $\beta \in R$ not zero. If β is a unit, then we have such a representation of α, and any such representation is clearly unique. If $\beta \in \mathcal{M}$, by hypothesis the number of principal ideals in an ascending chain

$$\alpha R \subsetneq \pi^m R \subsetneq \pi^{m-1} R \subsetneq \cdots \subsetneq \pi R$$

is bounded by a function of α so that there is a maximal exponent m such that $\alpha \in \pi^m R$. Since $\alpha \not\in \pi^{m+1} R$ we see that $\alpha = u \pi^m$ for some $u \not\in \pi R = \mathcal{M}$, so that u is a unit.

Finally, we show that all ideals are principal.

Let I be a non-zero ideal contained in \mathcal{M} (otherwise it is trivially principal). By the above, every non-zero element $\alpha \in I$ is of the form $u \pi^m$ for some unit and some non-negative integer m. Let m_0 be the least such integer occurring here and choose $\alpha_0 \in I$ of the form $\alpha_0 = u_0 \pi^{m_0}$ for some unit u_0.
We claim that every non-zero $\alpha \in R$ has a unique representation of the form $\alpha = u\pi^n$ for some unit u and non-negative integer n. This is obvious if α is a unit itself, so suppose $\alpha \in M$. Then $\alpha = \pi^m \beta$ for some $\beta \in R$ not zero. If β is a unit, then we have such a representation of α, and any such representation is clearly unique. If $\beta \in M$, by hypothesis the number of principal ideals in an ascending chain

$$\alpha R \subsetneq \pi^m R \subsetneq \pi^{m-1} R \subsetneq \cdots \subsetneq \pi R$$

is bounded by a function of α so that there is a maximal exponent m such that $\alpha \in \pi^m R$. Since $\alpha \notin \pi^{m+1} R$ we see that $\alpha = u\pi^m$ for some $u \notin \pi R = M$, so that u is a unit.

Finally, we show that all ideals are principal.

Let I be a non-zero ideal contained in M (otherwise it is trivially principal). By the above, every non-zero element $\alpha \in I$ is of the form $u\pi^m$ for some unit and some non-negative integer m. Let m_0 be the least such integer occurring here and choose $\alpha_0 \in I$ of the form $\alpha_0 = u_0\pi^{m_0}$ for some unit u_0. Then $\alpha_0 R = \pi^{m_0} R$
We claim that every non-zero \(\alpha \in R \) has a unique representation of the form \(\alpha = u\pi^n \) for some unit \(u \) and non-negative integer \(n \). This is obvious if \(\alpha \) is a unit itself, so suppose \(\alpha \in \mathcal{M} \). Then \(\alpha = \pi^m\beta \) for some \(\beta \in R \) not zero. If \(\beta \) is a unit, then we have such a representation of \(\alpha \), and any such representation is clearly unique. If \(\beta \in \mathcal{M} \), by hypothesis the number of principal ideals in an ascending chain

\[
\alpha R \subsetneq \pi^m R \subsetneq \pi^{m-1} R \subsetneq \cdots \subsetneq \pi R
\]

is bounded by a function of \(\alpha \) so that there is a maximal exponent \(m \) such that \(\alpha \in \pi^m R \). Since \(\alpha \not\in \pi^{m+1} R \) we see that \(\alpha = u\pi^m \) for some \(u \not\in \pi R = \mathcal{M} \), so that \(u \) is a unit.

Finally, we show that all ideals are principal.

Let \(I \) be a non-zero ideal contained in \(\mathcal{M} \) (otherwise it is trivially principal). By the above, every non-zero element \(\alpha \in I \) is of the form \(u\pi^m \) for some unit and some non-negative integer \(m \). Let \(m_0 \) be the least such integer occurring here and choose \(\alpha_0 \in I \) of the form \(\alpha_0 = u_0\pi^{m_0} \) for some unit \(u_0 \). Then \(\alpha_0 R = \pi^{m_0} R \) and all non-zero \(\alpha \in I \) satisfy
We claim that every non-zero $\alpha \in R$ has a unique representation of the form $\alpha = u\pi^n$ for some unit u and non-negative integer n. This is obvious if α is a unit itself, so suppose $\alpha \in \mathfrak{M}$. Then $\alpha = \pi^m \beta$ for some $\beta \in R$ not zero. If β is a unit, then we have such a representation of α, and any such representation is clearly unique. If $\beta \in \mathfrak{M}$, by hypothesis the number of principal ideals in an ascending chain

$$\alpha R \subsetneq \pi^m R \subsetneq \pi^{m-1} R \subsetneq \cdots \subsetneq \pi R$$

is bounded by a function of α so that there is a maximal exponent m such that $\alpha \in \pi^m R$. Since $\alpha \notin \pi^{m+1} R$ we see that $\alpha = u\pi^m$ for some $u \notin \pi R = \mathfrak{M}$, so that u is a unit.

Finally, we show that all ideals are principal.

Let I be a non-zero ideal contained in \mathfrak{M} (otherwise it is trivially principal). By the above, every non-zero element $\alpha \in I$ is of the form $u\pi^m$ for some unit and some non-negative integer m. Let m_0 be the least such integer occurring here and choose $\alpha_0 \in I$ of the form $\alpha_0 = u_0\pi^{m_0}$ for some unit u_0. Then $\alpha_0 R = \pi^{m_0} R$ and all non-zero $\alpha \in I$ satisfy $\alpha = u\pi^m \in \pi^{m_0} R$.

We claim that every non-zero $\alpha \in R$ has a unique representation of the form $\alpha = u\pi^n$ for some unit u and non-negative integer n. This is obvious if α is a unit itself, so suppose $\alpha \in M$. Then $\alpha = \pi^m\beta$ for some $\beta \in R$ not zero. If β is a unit, then we have such a representation of α, and any such representation is clearly unique. If $\beta \in M$, by hypothesis the number of principal ideals in an ascending chain

$$\alpha R \subsetneq \pi^m R \subsetneq \pi^{m-1} R \subsetneq \cdots \subsetneq \pi R$$

is bounded by a function of α so that there is a maximal exponent m such that $\alpha \in \pi^m R$. Since $\alpha \notin \pi^{m+1} R$ we see that $\alpha = u\pi^m$ for some $u \notin \pi R = M$, so that u is a unit.

Finally, we show that all ideals are principal.

Let I be a non-zero ideal contained in M (otherwise it is trivially principal). By the above, every non-zero element $\alpha \in I$ is of the form $u\pi^m$ for some unit and some non-negative integer m. Let m_0 be the least such integer occurring here and choose $\alpha_0 \in I$ of the form $\alpha_0 = u_0\pi^{m_0}$ for some unit u_0. Then $\alpha_0 R = \pi^{m_0} R$ and all non-zero $\alpha \in I$ satisfy $\alpha = u\pi^m \in \pi^{m_0} R$ since $m \geq m_0$ by construction.
We claim that every non-zero $\alpha \in R$ has a unique representation of the form $\alpha = u\pi^n$ for some unit u and non-negative integer n. This is obvious if α is a unit itself, so suppose $\alpha \in M$. Then $\alpha = \pi^m \beta$ for some $\beta \in R$ not zero. If β is a unit, then we have such a representation of α, and any such representation is clearly unique. If $\beta \in M$, by hypothesis the number of principal ideals in an ascending chain

$$\alpha R \subsetneq \pi^m R \subsetneq \pi^{m-1} R \subsetneq \cdots \subsetneq \pi R$$

is bounded by a function of α so that there is a maximal exponent m such that $\alpha \in \pi^m R$. Since $\alpha \notin \pi^{m+1} R$ we see that $\alpha = u\pi^m$ for some $u \notin \pi R = M$, so that u is a unit.

Finally, we show that all ideals are principal.

Let I be a non-zero ideal contained in M (otherwise it is trivially principal). By the above, every non-zero element $\alpha \in I$ is of the form $u\pi^m$ for some unit and some non-negative integer m. Let m_0 be the least such integer occurring here and choose $\alpha_0 \in I$ of the form $\alpha_0 = u_0\pi^{m_0}$ for some unit u_0. Then $\alpha_0 R = \pi^{m_0} R$ and all non-zero $\alpha \in I$ satisfy $\alpha = u\pi^m \in \pi^{m_0} R$ since $m \geq m_0$ by construction. Therefore $I = \alpha_0 R$.
Definition

A valuation ring that is also a principal ideal domain is called a **discrete valuation ring**.

Lemma (3)

Suppose R is a discrete valuation ring of a field K with maximal ideal M and write $M = \pi R$. Then every non-zero ideal is of the form $\pi^n R$ for some non-negative integer n and every non-zero $\alpha \in K$ is uniquely expressible as a product $u \pi^n$, where u is a unit and $n \in \mathbb{Z}$. This integer n is called the valuation of the element α and is denoted $v_R(\alpha)$. It is independent of the choice of the generator π of M.
Definition

A valuation ring that is also a principal ideal domain is called a discrete valuation ring.
Definition
A valuation ring that is also a principal ideal domain is called a \textit{discrete valuation ring}.

Lemma (3)
Suppose R is a discrete valuation ring of a field K with maximal ideal M and write $M = \pi R$. Then every non-zero ideal is of the form $\pi^n R$ for some non-negative integer n and every non-zero $\alpha \in K$ is uniquely expressible as a product $u \pi^n$, where u is a unit and $n \in \mathbb{Z}$. This integer n is called the valuation of the element α and is denoted $v_R(\alpha)$. It is independent of the choice of the generator π of M.

Definition
A valuation ring that is also a principal ideal domain is called a *discrete valuation ring*.

Lemma (3)
Suppose R is a discrete valuation ring of a field K with maximal ideal M and write $M = \pi R$. Then every non-zero ideal is of the form $\pi^n R$ for some non-negative integer n and every non-zero $\alpha \in K$ is uniquely expressible as a product $u \pi^n$, where u is a unit and $n \in \mathbb{Z}$. This integer n is called the valuation of the element α and is denoted $v_R(\alpha)$. It is independent of the choice of the generator π of M.

Math 681, Wednesday, February 24, 2021
Definition
A valuation ring that is also a principal ideal domain is called a discrete valuation ring.

Lemma (3)
Suppose R is a discrete valuation ring of a field K with maximal ideal \mathfrak{M} and write $\mathfrak{M} = \pi R$. Then every non-zero ideal is of the form $\pi^n R$ for some non-negative integer n and every non-zero $\alpha \in K$ is uniquely expressible as a product $u \pi^n$, where u is a unit and $n \in \mathbb{Z}$. This integer n is called the valuation of the element α and is denoted $v_R(\alpha)$. It is independent of the choice of the generator π of \mathfrak{M}.
Definition
A valuation ring that is also a principal ideal domain is called a *discrete valuation ring*.

Lemma (3)
Suppose R *is a discrete valuation ring of a field* K *with maximal ideal* \mathcal{M} *and write* $\mathcal{M} = \pi R$. *Then every non-zero ideal is of the form* $\pi^n R$ *for some non-negative integer* n. *Then every non-zero* $\alpha \in K$ *is uniquely expressible as a product* $u \pi^n$, *where* u *is a unit and* $n \in \mathbb{Z}$. *This integer* n *is called the valuation of the element* α *and is denoted* $v_R(\alpha)$. *It is independent of the choice of the generator* π *of* \mathcal{M}.
Definition
A valuation ring that is also a principal ideal domain is called a discrete valuation ring.

Lemma (3)
Suppose R is a discrete valuation ring of a field K with maximal ideal \mathfrak{M} and write $\mathfrak{M} = \pi R$. Then every non-zero ideal is of the form $\pi^n R$ for some non-negative integer n and every non-zero $\alpha \in K$ is uniquely expressible as a product $u \pi^n$, where u is a unit.
Definition

A valuation ring that is also a principal ideal domain is called a discrete valuation ring.

Lemma (3)

Suppose R is a discrete valuation ring of a field K with maximal ideal \mathfrak{M} and write $\mathfrak{M} = \pi R$. Then every non-zero ideal is of the form $\pi^n R$ for some non-negative integer n and every non-zero $\alpha \in K$ is uniquely expressible as a product $u \pi^n$, where u is a unit and $n \in \mathbb{Z}$.
Definition
A valuation ring that is also a principal ideal domain is called a *discrete valuation ring*.

Lemma (3)
Suppose R is a discrete valuation ring of a field K with maximal ideal \mathcal{M} and write $\mathcal{M} = \pi R$. Then every non-zero ideal is of the form $\pi^n R$ for some non-negative integer n and every non-zero $\alpha \in K$ is uniquely expressible as a product $u\pi^n$, where u is a unit and $n \in \mathbb{Z}$. This integer n is called the valuation of the element α.
Definition
A valuation ring that is also a principal ideal domain is called a discrete valuation ring.

Lemma (3)
Suppose R is a discrete valuation ring of a field K with maximal ideal \mathfrak{M} and write $\mathfrak{M} = \pi R$. Then every non-zero ideal is of the form $\pi^n R$ for some non-negative integer n and every non-zero $\alpha \in K$ is uniquely expressible as a product $u \pi^n$, where u is a unit and $n \in \mathbb{Z}$. This integer n is called the valuation of the element α and is denoted $v_R(\alpha)$.
Definition

A valuation ring that is also a principal ideal domain is called a discrete valuation ring.

Lemma (3)

Suppose R is a discrete valuation ring of a field K with maximal ideal \mathcal{M} and write $\mathcal{M} = \pi R$. Then every non-zero ideal is of the form $\pi^n R$ for some non-negative integer n and every non-zero $\alpha \in K$ is uniquely expressible as a product $u \pi^n$, where u is a unit and $n \in \mathbb{Z}$. This integer n is called the valuation of the element α and is denoted $v_R(\alpha)$. It is independent of the choice of the generator π of \mathcal{M}.
Proof:

Since R is a principal ideal domain, it is a unique factorization domain. Suppose α is an irreducible element (not a unit). Then $\alpha \in M$ so that $\alpha = \beta \pi$. But π is clearly irreducible so that β must be a unit. Thus, all irreducible elements are associates of π.

Let I be a non-zero ideal of R and write $I = \alpha R$ (possible since R is a principal ideal domain). Then by the above $\alpha = u \pi^n$ for some unique unit u and non-negative integer n, so that $I = \alpha R = \pi^n R$.

Let α be a non-zero element of the field. If $\alpha \in R$ then the principal ideal $\alpha R = \pi^n R$ for a unique non-negative integer n (if $n = 0$ if α is a unit) so that $\alpha = u \pi^n$ for some unit u.

If $\alpha \not\in R$, then $\alpha^{-1} \in R$ so that $\alpha^{-1} = u \pi^{-n}$ for some unit u and negative integer n, whence $\alpha = u^{-1} \pi^n$.

Proof: Since R is a principal ideal domain, it is a unique factorization domain.
Proof: Since R is a principal ideal domain, it is a unique factorization domain.
Suppose α is an irreducible element.
Proof: Since R is a principal ideal domain, it is a unique factorization domain.
Suppose α is an irreducible element (not a unit).
Proof: Since R is a principal ideal domain, it is a unique factorization domain.
Suppose α is an irreducible element (not a unit). Then $\alpha \in \mathbb{M}$
Proof: Since R is a principal ideal domain, it is a unique factorization domain.

Suppose α is an irreducible element (not a unit). Then $\alpha \in \mathcal{M}$ so that $\alpha = \beta \pi$.
Proof: Since R is a principal ideal domain, it is a unique factorization domain.
Suppose α is an irreducible element (not a unit). Then $\alpha \in M$ so that $\alpha = \beta \pi$. But π is clearly irreducible
Proof: Since R is a principal ideal domain, it is a unique factorization domain.

Suppose α is an irreducible element (not a unit). Then $\alpha \in M$ so that $\alpha = \beta \pi$. But π is clearly irreducible so that β must be a unit.
Proof: Since R is a principal ideal domain, it is a unique factorization domain.
Suppose α is an irreducible element (not a unit). Then $\alpha \in \mathcal{M}$ so that $\alpha = \beta \pi$. But π is clearly irreducible so that β must be a unit. Thus, all irreducible elements are associates of π.
Proof: Since R is a principal ideal domain, it is a unique factorization domain.
Suppose α is an irreducible element (not a unit). Then $\alpha \in \mathcal{M}$ so that $\alpha = \beta \pi$. But π is clearly irreducible so that β must be a unit. Thus, all irreducible elements are associates of π.

Let I be a non-zero ideal of R and write $I = \alpha R$
Proof: Since R is a principal ideal domain, it is a unique factorization domain.

Suppose α is an irreducible element (not a unit). Then $\alpha \in M$ so that $\alpha = \beta \pi$. But π is clearly irreducible so that β must be a unit. Thus, all irreducible elements are associates of π.

Let I be a non-zero ideal of R and write $I = \alpha R$ (possible since R is a principal ideal domain).
Proof: Since R is a principal ideal domain, it is a unique factorization domain.
Suppose α is an irreducible element (not a unit). Then $\alpha \in \mathcal{M}$ so that $\alpha = \beta \pi$. But π is clearly irreducible so that β must be a unit. Thus, all irreducible elements are associates of π.

Let I be a non-zero ideal of R and write $I = \alpha R$ (possible since R is a principal ideal domain). Then by the above $\alpha = u \pi^n$ for some unique unit u and non-negative integer n,
Proof: Since R is a principal ideal domain, it is a unique factorization domain.

Suppose α is an irreducible element (not a unit). Then $\alpha \in \mathcal{M}$ so that $\alpha = \beta \pi$. But π is clearly irreducible so that β must be a unit. Thus, all irreducible elements are associates of π.

Let I be a non-zero ideal of R and write $I = \alpha R$ (possible since R is a principal ideal domain). Then by the above $\alpha = u \pi^n$ for some unique unit u and non-negative integer n, so that $I = \alpha R = \pi^n R$.
Proof: Since R is a principal ideal domain, it is a unique factorization domain.
Suppose α is an irreducible element (not a unit). Then $\alpha \in M$ so that $\alpha = \beta \pi$. But π is clearly irreducible so that β must be a unit. Thus, all irreducible elements are associates of π.

Let I be a non-zero ideal of R and write $I = \alpha R$ (possible since R is a principal ideal domain). Then by the above $\alpha = u \pi^n$ for some unique unit u and non-negative integer n, so that $I = \alpha R = \pi^n R$.

Let α be a non-zero element of the field.
Proof: Since R is a principal ideal domain, it is a unique factorization domain.

Suppose α is an irreducible element (not a unit). Then $\alpha \in \mathcal{M}$ so that $\alpha = \beta \pi$. But π is clearly irreducible so that β must be a unit. Thus, all irreducible elements are associates of π.

Let I be a non-zero ideal of R and write $I = \alpha R$ (possible since R is a principal ideal domain). Then by the above $\alpha = u\pi^n$ for some unique unit u and non-negative integer n, so that $I = \alpha R = \pi^n R$.

Let α be a non-zero element of the field. If $\alpha \in R$ then the principal ideal $\alpha R = \pi^n R$ for a unique non-negative integer n.
Proof: Since R is a principal ideal domain, it is a unique factorization domain.

Suppose α is an irreducible element (not a unit). Then $\alpha \in \mathcal{M}$ so that $\alpha = \beta \pi$. But π is clearly irreducible so that β must be a unit. Thus, all irreducible elements are associates of π.

Let I be a non-zero ideal of R and write $I = \alpha R$ (possible since R is a principal ideal domain). Then by the above $\alpha = u \pi^n$ for some unique unit u and non-negative integer n, so that $I = \alpha R = \pi^n R$.

Let α be a non-zero element of the field. If $\alpha \in R$ then the principal ideal $\alpha R = \pi^n R$ for a unique non-negative integer n ($n = 0$ if α is a unit).
Proof: Since R is a principal ideal domain, it is a unique factorization domain.

Suppose α is an irreducible element (not a unit). Then $\alpha \in \mathcal{M}$ so that $\alpha = \beta \pi$. But π is clearly irreducible so that β must be a unit. Thus, all irreducible elements are associates of π.

Let I be a non-zero ideal of R and write $I = \alpha R$ (possible since R is a principal ideal domain). Then by the above $\alpha = u\pi^n$ for some unique unit u and non-negative integer n, so that $I = \alpha R = \pi^n R$.

Let α be a non-zero element of the field. If $\alpha \in R$ then the principal ideal $\alpha R = \pi^n R$ for a unique non-negative integer n ($n = 0$ if α is a unit) so that $\alpha = u\pi^n$ for some unit u.
Proof: Since R is a principal ideal domain, it is a unique factorization domain.

Suppose α is an irreducible element (not a unit). Then $\alpha \in \mathcal{M}$ so that $\alpha = \beta \pi$. But π is clearly irreducible so that β must be a unit. Thus, all irreducible elements are associates of π.

Let I be a non-zero ideal of R and write $I = \alpha R$ (possible since R is a principal ideal domain). Then by the above $\alpha = u \pi^n$ for some unique unit u and non-negative integer n, so that $I = \alpha R = \pi^n R$.

Let α be a non-zero element of the field. If $\alpha \in R$ then the principal ideal $\alpha R = \pi^n R$ for a unique non-negative integer n ($n = 0$ if α is a unit) so that $\alpha = u \pi^n$ for some unit u. If $\alpha \notin R$, then $\alpha^{-1} \in R$.
Proof: Since R is a principal ideal domain, it is a unique factorization domain.

Suppose α is an irreducible element (not a unit). Then $\alpha \in \mathcal{M}$ so that $\alpha = \beta \pi$. But π is clearly irreducible so that β must be a unit. Thus, all irreducible elements are associates of π.

Let I be a non-zero ideal of R and write $I = \alpha R$ (possible since R is a principal ideal domain). Then by the above $\alpha = u \pi^n$ for some unique unit u and non-negative integer n, so that $I = \alpha R = \pi^n R$.

Let α be a non-zero element of the field. If $\alpha \in R$ then the principal ideal $\alpha R = \pi^n R$ for a unique non-negative integer n ($n = 0$ if α is a unit) so that $\alpha = u \pi^n$ for some unit u. If $\alpha \not\in R$, then $\alpha^{-1} \in R$ so that $\alpha^{-1} = u \pi^{-n}$ for some unit u and negative integer n, ...
Proof: Since R is a principal ideal domain, it is a unique factorization domain.
Suppose α is an irreducible element (not a unit). Then $\alpha \in \mathcal{M}$ so that $\alpha = \beta \pi$. But π is clearly irreducible so that β must be a unit. Thus, all irreducible elements are associates of π.

Let I be a non-zero ideal of R and write $I = \alpha R$ (possible since R is a principal ideal domain). Then by the above $\alpha = u \pi^n$ for some unique unit u and non-negative integer n, so that $I = \alpha R = \pi^n R$.

Let α be a non-zero element of the field. If $\alpha \in R$ then the principal ideal $\alpha R = \pi^n R$ for a unique non-negative integer n ($n = 0$ if α is a unit) so that $\alpha = u \pi^n$ for some unit u. If $\alpha \not\in R$, then $\alpha^{-1} \in R$ so that $\alpha^{-1} = u \pi^{-n}$ for some unit u and negative integer n, whence $\alpha = u^{-1} \pi^n$.
Proof: Since R is a principal ideal domain, it is a unique factorization domain.

Suppose α is an irreducible element (not a unit). Then $\alpha \in \mathfrak{M}$ so that $\alpha = \beta \pi$. But π is clearly irreducible so that β must be a unit. Thus, all irreducible elements are associates of π.

Let I be a non-zero ideal of R and write $I = \alpha R$ (possible since R is a principal ideal domain). Then by the above $\alpha = u \pi^n$ for some unique unit u and non-negative integer n, so that $I = \alpha R = \pi^n R$.

Let α be a non-zero element of the field. If $\alpha \in R$ then the principal ideal $\alpha R = \pi^n R$ for a unique non-negative integer n ($n = 0$ if α is a unit) so that $\alpha = u \pi^n$ for some unit u. If $\alpha \not\in R$, then $\alpha^{-1} \in R$ so that $\alpha^{-1} = u \pi^{-n}$ for some unit u and negative integer n, whence $\alpha = u^{-1} \pi^n$.
Clearly all generators of \mathcal{M} are irreducible elements of R
Clearly all generators of M are irreducible elements of R which are associates of π as shown above,
Clearly all generators of \(\mathfrak{M} \) are irreducible elements of \(R \) which are associates of \(\pi \) as shown above, which shows that the valuation \(\nu_R \) doesn’t depend on the choice of the generator.
Clearly all generators of \mathcal{M} are irreducible elements of R which are associates of π as shown above, which shows that the valuation ν_R doesn’t depend on the choice of the generator.

Lemma (4)
Clearly all generators of \mathfrak{M} are irreducible elements of R which are associates of π as shown above, which shows that the valuation ν_R doesn’t depend on the choice of the generator.

Lemma (4)

Let R be discrete valuation ring of a field K
Clearly all generators of \mathcal{M} are irreducible elements of R which are associates of π as shown above, which shows that the valuation v_R doesn’t depend on the choice of the generator.

Lemma (4)

Let R be discrete valuation ring of a field K and for $\alpha \in K$ set

$$|\alpha| = \begin{cases} \exp(-v_R(\alpha)) & \text{if } \alpha \neq 0, \\ 0 & \text{otherwise.} \end{cases}$$

Then $|\cdot|$ is a non-archimedean absolute value on K. Moreover, any two distinct discrete valuation rings yield inequivalent absolute values.

Proof: Let π generate the maximal ideal of R.

First suppose α and β are non-zero with $v_R(\alpha) = n$ and $v_R(\beta) = m$. Then $\alpha = u\pi^n$ and $\beta = u'\pi^m$ for units $u, u' \in R$ and $n, m \in \mathbb{Z}$, so that $\alpha\beta = uu'\pi^{n+m}$ and $v_R(\alpha\beta) = v_R(\alpha) + v_R(\beta)$.
Clearly all generators of \mathfrak{M} are irreducible elements of R which are associates of π as shown above, which shows that the valuation v_R doesn’t depend on the choice of the generator.

Lemma (4)

Let R be discrete valuation ring of a field K and for $\alpha \in K$ set

$$|\alpha| = \begin{cases} \exp (- v_R(\alpha)) & \text{if } \alpha \neq 0, \end{cases}$$
Clearly all generators of \mathfrak{M} are irreducible elements of R which are associates of π as shown above, which shows that the valuation ν_R doesn’t depend on the choice of the generator.

Lemma (4)

Let R be discrete valuation ring of a field K and for $\alpha \in K$ set

$$|\alpha| = \begin{cases} \exp (- \nu_R(\alpha)) & \text{if } \alpha \neq 0, \\ 0 & \text{otherwise.} \end{cases}$$
Clearly all generators of \mathfrak{M} are irreducible elements of R which are associates of π as shown above, which shows that the valuation ν_R doesn’t depend on the choice of the generator.

Lemma (4)

Let R be discrete valuation ring of a field K and for $\alpha \in K$ set

$$|\alpha| = \begin{cases} \exp(-\nu_R(\alpha)) & \text{if } \alpha \neq 0, \\ 0 & \text{otherwise.} \end{cases}$$

Then $|\cdot|$ is a non-archimedean absolute value on K.
Clearly all generators of \mathcal{M} are irreducible elements of R which are associates of π as shown above, which shows that the valuation ν_R doesn’t depend on the choice of the generator.

Lemma (4)

Let R be discrete valuation ring of a field K and for $\alpha \in K$ set

$$
|\alpha| = \begin{cases}
\exp(-\nu_R(\alpha)) & \text{if } \alpha \neq 0, \\
0 & \text{otherwise.}
\end{cases}
$$

Then $|\cdot|$ is a non-archimedean absolute value on K. Moreover, any two distinct discrete valuation rings yield inequivalent absolute values.
Clearly all generators of \mathcal{M} are irreducible elements of R which are associates of π as shown above, which shows that the valuation v_R doesn’t depend on the choice of the generator.

Lemma (4)

Let R be discrete valuation ring of a field K and for $\alpha \in K$ set

$$|\alpha| = \begin{cases}
\exp \left(- v_R(\alpha) \right) & \text{if } \alpha \neq 0, \\
0 & \text{otherwise}.
\end{cases}$$

Then $|\cdot|$ is a non-archimedean absolute value on K. Moreover, any two distinct discrete valuation rings yield inequivalent absolute values.

Proof:
Clearly all generators of \mathfrak{M} are irreducible elements of R which are associates of π as shown above, which shows that the valuation v_R doesn’t depend on the choice of the generator.

Lemma (4)

Let R be discrete valuation ring of a field K and for $\alpha \in K$ set

$$|\alpha| = \begin{cases}
\exp(-v_R(\alpha)) & \text{if } \alpha \neq 0, \\
0 & \text{otherwise}.
\end{cases}$$

Then $|\cdot|$ is a non-archimedean absolute value on K. Moreover, any two distinct discrete valuation rings yield inequivalent absolute values.

Proof: Let π generate the maximal ideal of R.
Clearly all generators of \mathfrak{M} are irreducible elements of R which are associates of π as shown above, which shows that the valuation v_R doesn’t depend on the choice of the generator.

Lemma (4)

Let R be discrete valuation ring of a field K and for $\alpha \in K$ set

$$|\alpha| = \begin{cases}
\exp (-v_R(\alpha)) & \text{if } \alpha \neq 0, \\
0 & \text{otherwise}.
\end{cases}$$

Then $|\cdot|$ is a non-archimedean absolute value on K. Moreover, any two distinct discrete valuation rings yield inequivalent absolute values.

Proof: Let π generate the maximal ideal of R.

First suppose α and β are non-zero with $v_R(\alpha) = n$ and $v_R(\beta) = m$.
Clearly all generators of \mathfrak{M} are irreducible elements of R which are associates of π as shown above, which shows that the valuation v_R doesn’t depend on the choice of the generator.

Lemma (4)

Let R be discrete valuation ring of a field K and for $\alpha \in K$ set

$$|\alpha| = \begin{cases} \exp(-v_R(\alpha)) & \text{if } \alpha \neq 0, \\ 0 & \text{otherwise.} \end{cases}$$

Then $|\cdot|$ is a non-archimedean absolute value on K. Moreover, any two distinct discrete valuation rings yield inequivalent absolute values.

Proof: Let π generate the maximal ideal of R.

First suppose α and β are non-zero with $v_R(\alpha) = n$ and $v_R(\beta) = m$. Then $\alpha = u\pi^n$ and $\beta = u'\pi^m$ for units $u, u' \in R$ and $n, m \in \mathbb{Z}$,
Clearly all generators of \mathcal{M} are irreducible elements of R which are associates of π as shown above, which shows that the valuation ν_R doesn’t depend on the choice of the generator.

Lemma (4)

Let R be discrete valuation ring of a field K and for $\alpha \in K$ set

$$|\alpha| = \begin{cases} \exp(-\nu_R(\alpha)) & \text{if } \alpha \neq 0, \\ 0 & \text{otherwise.} \end{cases}$$

Then $|\cdot|$ is a non-archimedean absolute value on K. Moreover, any two distinct discrete valuation rings yield inequivalent absolute values.

Proof: Let π generate the maximal ideal of R.

First suppose α and β are non-zero with $\nu_R(\alpha) = n$ and $\nu_R(\beta) = m$. Then $\alpha = u\pi^n$ and $\beta = u'\pi^m$ for units $u, u' \in R$ and $n, m \in \mathbb{Z}$, so that $\alpha\beta = uu'\pi^{n+m}$ and $\nu_R(\alpha\beta) = \nu_R(\alpha) + \nu_R(\beta)$.

For the ultra-metric inequality,
For the ultra-metric inequality, by what we have already shown
For the ultra-metric inequality, by what we have already shown
\[v_R(\alpha + \beta) = v_R(\alpha) + v_R(1 + \beta/\alpha) \]
For the ultra-metric inequality, by what we have already shown
\(v_R(\alpha + \beta) = v_R(\alpha) + v_R(1 + \beta/\alpha) \) (assuming \(\alpha \neq 0 \), of course).
For the ultra-metric inequality, by what we have already shown
\(v_R(\alpha + \beta) = v_R(\alpha) + v_R(1 + \beta/\alpha) \) (assuming \(\alpha \neq 0 \), of course). Exercise
#3 from homework #7 is to show that
For the ultra-metric inequality, by what we have already shown \(v_R(\alpha + \beta) = v_R(\alpha) + v_R(1 + \beta/\alpha) \) (assuming \(\alpha \neq 0 \), of course). Exercise #3 from homework #7 is to show that \(v_R(1 + \gamma) \geq \min\{0, v_R(\gamma)\} \) for all \(\gamma \),
For the ultra-metric inequality, by what we have already shown

$$v_R(\alpha + \beta) = v_R(\alpha) + v_R(1 + \beta/\alpha)$$

(assuming \(\alpha \neq 0\), of course). Exercise #3 from homework #7 is to show that

$$v_R(1 + \gamma) \geq \min\{0, v_R(\gamma)\}$$

for all \(\gamma\), whence we get the ultra-metric inequality.
For the ultra-metric inequality, by what we have already shown $v_R(\alpha + \beta) = v_R(\alpha) + v_R(1 + \beta/\alpha)$ (assuming $\alpha \neq 0$, of course). Exercise #3 from homework #7 is to show that $v_R(1 + \gamma) \geq \min\{0, v_R(\gamma)\}$ for all γ, whence we get the ultra-metric inequality.

Let R_1 and R_2 be distinct valuation rings of K.
For the ultra-metric inequality, by what we have already shown
\[\nu_R(\alpha + \beta) = \nu_R(\alpha) + \nu_R(1 + \beta/\alpha) \] (assuming \(\alpha \neq 0 \), of course). Exercise
\#3 from homework \#7 is to show that \(\nu_R(1 + \gamma) \geq \min\{0, \nu_R(\gamma)\} \) for all \(\gamma \), whence we get the ultra-metric inequality.

Let \(R_1 \) and \(R_2 \) be distinct valuation rings of \(K \) and denote the corresponding absolute values \(|\cdot|_1 \) and \(|\cdot|_2 \), respectively.
For the ultra-metric inequality, by what we have already shown
\(v_R(\alpha + \beta) = v_R(\alpha) + v_R(1 + \beta/\alpha) \) (assuming \(\alpha \neq 0 \), of course). Exercise #3 from homework #7 is to show that \(v_R(1 + \gamma) \geq \min\{0, v_R(\gamma)\} \) for all \(\gamma \), whence we get the ultra-metric inequality.

Let \(R_1 \) and \(R_2 \) be distinct valuation rings of \(K \) and denote the corresponding absolute values \(|\cdot|_1 \) and \(|\cdot|_2 \), respectively. Without loss of generality there is an \(\alpha \in R_1 \setminus R_2 \).
For the ultra-metric inequality, by what we have already shown
\(v_R(\alpha + \beta) = v_R(\alpha) + v_R(1 + \beta/\alpha) \) (assuming \(\alpha \neq 0 \), of course). Exercise #3 from homework #7 is to show that \(v_R(1 + \gamma) \geq \min\{0, v_R(\gamma)\} \) for all \(\gamma \), whence we get the ultra-metric inequality.

Let \(R_1 \) and \(R_2 \) be distinct valuation rings of \(K \) and denote the corresponding absolute values \(|\cdot|_1 \) and \(|\cdot|_2 \), respectively. Without loss of generality there is an \(\alpha \in R_1 \setminus R_2 \). Then \(|\alpha|_1 \leq 1 < |\alpha|_2 \),
For the ultra-metric inequality, by what we have already shown
\[v_R(\alpha + \beta) = v_R(\alpha) + v_R(1 + \beta/\alpha) \] (assuming \(\alpha \neq 0 \), of course). Exercise
#3 from homework #7 is to show that \(v_R(1 + \gamma) \geq \min\{0, v_R(\gamma)\} \) for all
\(\gamma \), whence we get the ultra-metric inequality.

Let \(R_1 \) and \(R_2 \) be distinct valuation rings of \(K \) and denote the
corresponding absolute values \(|\cdot|_1 \) and \(|\cdot|_2 \), respectively. Without loss of
generality there is an \(\alpha \in R_1 \setminus R_2 \). Then \(|\alpha|_1 \leq 1 < |\alpha|_2 \), so that the
sequence \(\alpha^{-n} \rightarrow 0 \) in the topology given by \(|\cdot|_2 \), but not for that
given by \(|\cdot|_1 \).
For the ultra-metric inequality, by what we have already shown \(v_R(\alpha + \beta) = v_R(\alpha) + v_R(1 + \beta/\alpha) \) (assuming \(\alpha \neq 0 \), of course). Exercise \#3 from homework \#7 is to show that \(v_R(1 + \gamma) \geq \min\{0, v_R(\gamma)\} \) for all \(\gamma \), whence we get the ultra-metric inequality.

Let \(R_1 \) and \(R_2 \) be distinct valuation rings of \(K \) and denote the corresponding absolute values \(|\cdot|_1 \) and \(|\cdot|_2 \), respectively. Without loss of generality there is an \(\alpha \in R_1 \setminus R_2 \). Then \(|\alpha|_1 \leq 1 < |\alpha|_2 \), so that the sequence \(\alpha e^{-n} \rightarrow 0 \) in the topology given by \(|\cdot|_2 \), but not for that given by \(|\cdot|_1 \). Thus these are inequivalent absolute values.
For the ultra-metric inequality, by what we have already shown
\(v_R(\alpha + \beta) = v_R(\alpha) + v_R(1 + \beta/\alpha) \) (assuming \(\alpha \neq 0 \), of course). Exercise
\#3 from homework \#7 is to show that \(v_R(1 + \gamma) \geq \min\{0, v_R(\gamma)\} \) for all
\(\gamma \), whence we get the ultra-metric inequality.

Let \(R_1 \) and \(R_2 \) be distinct valuation rings of \(K \) and denote the
corresponding absolute values \(|\cdot|_1 \) and \(|\cdot|_2 \), respectively. Without loss of
generality there is an \(\alpha \in R_1 \setminus R_2 \). Then \(|\alpha|_1 \leq 1 < |\alpha|_2 \), so that the
sequence \(\alpha 2^{-n} \rightarrow 0 \) in the topology given by \(|\cdot|_2 \), but not for that
given by \(|\cdot|_1 \). Thuse these are inequivalent absolute values.

Proposition (1)
For the ultra-metric inequality, by what we have already shown
\[v_R(\alpha + \beta) = v_R(\alpha) + v_R(1 + \beta/\alpha) \] (assuming \(\alpha \neq 0 \), of course). Exercise #3 from homework #7 is to show that \(v_R(1 + \gamma) \geq \min\{0, v_R(\gamma)\} \) for all \(\gamma \), whence we get the ultra-metric inequality.

Let \(R_1 \) and \(R_2 \) be distinct valuation rings of \(K \) and denote the corresponding absolute values \(|\cdot|_1 \) and \(|\cdot|_2 \), respectively. Without loss of generality there is an \(\alpha \in R_1 \setminus R_2 \). Then \(|\alpha|_1 \leq 1 < |\alpha|_2 \), so that the sequence \(\alpha_2^{-n} \to 0 \) in the topology given by \(|\cdot|_2 \), but not for that given by \(|\cdot|_1 \). Thuse these are inequivalent absolute values.

Proposition (1)

If \(K \) is a number field or a function field,
For the ultra-metric inequality, by what we have already shown $v_R(\alpha + \beta) = v_R(\alpha) + v_R(1 + \beta/\alpha)$ (assuming $\alpha \neq 0$, of course). Exercise #3 from homework #7 is to show that $v_R(1 + \gamma) \geq \min\{0, v_R(\gamma)\}$ for all γ, whence we get the ultra-metric inequality.

Let R_1 and R_2 be distinct valuation rings of K and denote the corresponding absolute values $|\cdot|_1$ and $|\cdot|_2$, respectively. Without loss of generality there is an $\alpha \in R_1 \setminus R_2$. Then $|\alpha|_1 \leq 1 < |\alpha|_2$, so that the sequence $\alpha 2^{-n} \to 0$ in the topology given by $|\cdot|_2$, but not for that given by $|\cdot|_1$. Thuse these are inequivalent absolute values.

Proposition (1)

If K is a number field or a function field, then all valuation rings R of K satisfy the hypothesis of Lemma 2
For the ultra-metric inequality, by what we have already shown
\[v_R(\alpha + \beta) = v_R(\alpha) + v_R(1 + \beta/\alpha) \] (assuming \(\alpha \neq 0 \), of course). Exercise #3 from homework #7 is to show that \(v_R(1 + \gamma) \geq \min\{0, v_R(\gamma)\} \) for all \(\gamma \), whence we get the ultra-metric inequality.

Let \(R_1 \) and \(R_2 \) be distinct valuation rings of \(K \) and denote the corresponding absolute values \(|\cdot|_1 \) and \(|\cdot|_2 \), respectively. Without loss of generality there is an \(\alpha \in R_1 \setminus R_2 \). Then \(|\alpha|_1 \leq 1 < |\alpha|_2 \), so that the sequence \(\alpha_2^{-n} \to 0 \) in the topology given by \(|\cdot|_2 \), but not for that given by \(|\cdot|_1 \). Thus these are inequivalent absolute values.

Proposition (1)

If \(K \) is a number field or a function field, then all valuation rings \(R \) of \(K \) satisfy the hypothesis of Lemma 2 and are hence discrete valuation rings.
Proof:

As remarked above $R \supseteq \mathbb{Z}$ in characteristic 0, which is certainly the case for number fields, and $R \supseteq \mathbb{F}_p$ in characteristic p, which is the case for function fields. We claim that in fact R contains the entire field of constants for a function field K.

Indeed, let α be a non-zero element of the field of constants with minimal polynomial $z_0 + z_1 Y + \cdots + Y^n \in \mathbb{F}_p[Y]$. Then

\[
\alpha^n = -z_0 - \cdots - z_{n-1} - \frac{1}{\alpha^{n-1}} \in \mathbb{F}_p[\alpha^{-1}].
\]

Since either $\alpha \in R$ or $\alpha^{-1} \in R$, we must have $\alpha \in R$.

We remark that the same argument shows $R \supseteq \mathcal{O}_K$ in the number field case.
Proof: As remarked above
Proof: As remarked above $R \supseteq \mathbb{Z}$ in characteristic 0,
Proof: As remarked above $R \supseteq \mathbb{Z}$ in characteristic 0, which is certainly the case for number fields,
Proof: As remarked above $R \supseteq \mathbb{Z}$ in characteristic 0, which is certainly the case for number fields, and $R \supseteq \mathbb{F}_p$ in characteristic p,
Proof: As remarked above $R \supseteq \mathbb{Z}$ in characteristic 0, which is certainly the case for number fields, and $R \supseteq \mathbb{F}_p$ in characteristic p, which is the case for function fields.
Proof: As remarked above $R \supseteq \mathbb{Z}$ in characteristic 0, which is certainly the case for number fields, and $R \supseteq \mathbb{F}_p$ in characteristic p, which is the case for function fields. We claim that in fact R contains the entire field of constants for a function field K.

Indeed, let α be a non-zero element of the field of constants with minimal polynomial $z_0 + z_1 \alpha Y + \cdots + Y^n \in \mathbb{F}_p[Y]$. Then $\alpha^n = -z_0 - \cdots - z_n - 1 \alpha_{n-1} \in \mathbb{F}_p[\alpha - 1]$. Since either $\alpha \in R$ or $\alpha - 1 \in R$, we must have $\alpha \in R$. We remark that the same argument shows $R \supseteq \mathcal{O}_K$ in the number field case.
Proof: As remarked above $R \supseteq \mathbb{Z}$ in characteristic 0, which is certainly the case for number fields, and $R \supseteq \mathbb{F}_p$ in characteristic p, which is the case for function fields. We claim that in fact R contains the entire field of constants for a function field K.

Indeed, let α be a non-zero element of the field of constants for a function field K.
Proof: As remarked above $R \supseteq \mathbb{Z}$ in characteristic 0, which is certainly the case for number fields, and $R \supseteq \mathbb{F}_p$ in characteristic p, which is the case for function fields. We claim that in fact R contains the entire field of constants for a function field K.

Indeed, let α be a non-zero element of the field of constants with minimal polynomial $z_0 + z_1 Y + \cdots + Y^n \in \mathbb{F}_p[Y]$.
Proof: As remarked above \(R \supseteq \mathbb{Z} \) in characteristic 0, which is certainly the case for number fields, and \(R \supseteq \mathbb{F}_p \) in characteristic \(p \), which is the case for function fields. We claim that in fact \(R \) contains the entire field of constants for a function field \(K \).

Indeed, let \(\alpha \) be a non-zero element of the field of constants with minimal polynomial \(z_0 + z_1 Y + \cdots + Y^n \in \mathbb{F}_p[Y] \). Then

\[
\alpha^n = -z_0 - \cdots - z_{n-1}\alpha^{n-1},
\]
Proof: As remarked above $R \supseteq \mathbb{Z}$ in characteristic 0, which is certainly the case for number fields, and $R \supseteq \mathbb{F}_p$ in characteristic p, which is the case for function fields. We claim that in fact R contains the entire field of constants for a function field K.

Indeed, let α be a non-zero element of the field of constants with minimal polynomial $z_0 + z_1 Y + \cdots + Y^n \in \mathbb{F}_p[Y]$. Then

$$\alpha^n = -z_0 - \cdots - z_{n-1} \alpha^{n-1},$$

$$\alpha = -z_0 \alpha^{-(n-1)} - \cdots - z_{n-1} \in \mathbb{F}_p[\alpha^{-1}].$$
Proof: As remarked above $R \supseteq \mathbb{Z}$ in characteristic 0, which is certainly the case for number fields, and $R \supseteq \mathbb{F}_p$ in characteristic p, which is the case for function fields. We claim that in fact R contains the entire field of constants for a function field K.

Indeed, let α be a non-zero element of the field of constants with minimal polynomial $z_0 + z_1 Y + \cdots + Y^n \in \mathbb{F}_p[Y]$. Then

\[\alpha^n = -z_0 - \cdots - z_{n-1} \alpha^{n-1}, \]
\[\alpha = -z_0 \alpha^{-(n-1)} - \cdots - z_{n-1} \in \mathbb{F}_p[\alpha^{-1}]. \]

Since either $\alpha \in R$ or $\alpha^{-1} \in R$,

...
Proof: As remarked above $R \supseteq \mathbb{Z}$ in characteristic 0, which is certainly the case for number fields, and $R \supseteq \mathbb{F}_p$ in characteristic p, which is the case for function fields. We claim that in fact R contains the entire field of constants for a function field K.

Indeed, let α be a non-zero element of the field of constants with minimal polynomial $z_0 + z_1 Y + \cdots + Y^n \in \mathbb{F}_p[Y]$. Then

$$\alpha^n = -z_0 - \cdots - z_{n-1} \alpha^{n-1},$$

$$\alpha = -z_0 \alpha^{-(n-1)} - \cdots - z_{n-1} \in \mathbb{F}_p[\alpha^{-1}].$$

Since either $\alpha \in R$ or $\alpha^{-1} \in R$, we must have $\alpha \in R$.
Proof: As remarked above $R \supseteq \mathbb{Z}$ in characteristic 0, which is certainly the case for number fields, and $R \supseteq \mathbb{F}_p$ in characteristic p, which is the case for function fields. We claim that in fact R contains the entire field of constants for a function field K.

Indeed, let α be a non-zero element of the field of constants with minimal polynomial $z_0 + z_1 Y + \cdots + Y^n \in \mathbb{F}_p[Y]$. Then

$$\alpha^n = -z_0 - \cdots - z_{n-1}\alpha^{n-1},$$

$$\alpha = -z_0\alpha^{-(n-1)} - \cdots - z_{n-1} \in \mathbb{F}_p[\alpha^{-1}].$$

Since either $\alpha \in R$ or $\alpha^{-1} \in R$, we must have $\alpha \in R$.

We remark that the same argument shows $R \supseteq \mathcal{O}_K$ in the number field case.
Let F denote the prime field
Let F denote the prime field (\mathbb{Q} in characteristic 0 and \mathbb{F}_p in characteristic p).
Let F denote the prime field (\mathbb{Q} in characteristic 0 and \mathbb{F}_p in characteristic p).

Suppose $\alpha_1, \ldots, \alpha_n \in M$
Let F denote the prime field (\mathbb{Q} in characteristic 0 and \mathbb{F}_p in characteristic p).

Suppose $\alpha_1, \ldots, \alpha_n \in M$ with $\alpha_i \in \alpha_{i+1}M$ for all $i < n$,
Let F denote the prime field (\mathbb{Q} in characteristic 0 and \mathbb{F}_p in characteristic p).

Suppose $\alpha_1, \ldots, \alpha_n \in M$ with $\alpha_i \in \alpha_{i+1}M$ for all $i < n$, i.e.,

$$\alpha_1 R \subsetneq \alpha_2 R \subsetneq \cdots \subsetneq \alpha_n R.$$
Let F denote the prime field (\mathbb{Q} in characteristic 0 and \mathbb{F}_p in characteristic p).

Suppose $\alpha_1, \ldots, \alpha_n \in \mathcal{M}$ with $\alpha_i \in \alpha_{i+1}\mathcal{M}$ for all $i < n$, i.e.,

$$\alpha_1 R \subsetneq \alpha_2 R \subsetneq \cdots \subsetneq \alpha_n R.$$

We claim that these elements are linearly independent over $F(\alpha_1)$.

Let F denote the prime field (\mathbb{Q} in characteristic 0 and \mathbb{F}_p in characteristic p).

Suppose $\alpha_1, \ldots, \alpha_n \in \mathcal{M}$ with $\alpha_i \in \alpha_{i+1} \mathcal{M}$ for all $i < n$, i.e.,

$$\alpha_1 R \subsetneq \alpha_2 R \subsetneq \cdots \subsetneq \alpha_n R.$$

We claim that these elements are linearly independent over $F(\alpha_1)$.

To see why, suppose

$$\sum_{i=1}^n P_i(\alpha_1) \alpha_i = 0$$
Let F denote the prime field (\mathbb{Q} in characteristic 0 and \mathbb{F}_p in characteristic p).

Suppose $\alpha_1, \ldots, \alpha_n \in \mathcal{M}$ with $\alpha_i \in \alpha_{i+1}\mathcal{M}$ for all $i < n$, i.e.,

$$\alpha_1 R \subsetneq \alpha_2 R \subsetneq \cdots \subsetneq \alpha_n R.$$

We claim that these elements are linearly independent over $F(\alpha_1)$.

To see why, suppose

$$\sum_{i=1}^{n} P_i(\alpha_1)\alpha_i = 0$$

with $P_i(\alpha_1) \in F[\alpha_1]$ for all i.
Let F denote the prime field (\mathbb{Q} in characteristic 0 and \mathbb{F}_p in characteristic p).

Suppose $\alpha_1, \ldots, \alpha_n \in M$ with $\alpha_i \in \alpha_{i+1}M$ for all $i < n$, i.e.,

$$\alpha_1 R \subsetneq \alpha_2 R \subsetneq \cdots \subsetneq \alpha_n R.$$

We claim that these elements are linearly independent over $F(\alpha_1)$.

To see why, suppose

$$\sum_{i=1}^{n} P_i(\alpha_1) \alpha_i = 0$$

with $P_i(\alpha_1) \in F[\alpha_1]$ for all i. Without loss of generality $P_i(\alpha_1) \in \mathbb{Z}[\alpha_1]$ in characteristic 0,
Let F denote the prime field (\mathbb{Q} in characteristic 0 and \mathbb{F}_p in characteristic p).

Suppose $\alpha_1, \ldots, \alpha_n \in M$ with $\alpha_i \in \alpha_{i+1}M$ for all $i < n$, i.e.,

$$\alpha_1 R \subsetneq \alpha_2 R \subsetneq \cdots \subsetneq \alpha_n R.$$

We claim that these elements are linearly independent over $F(\alpha_1)$.

To see why, suppose

$$\sum_{i=1}^{n} P_i(\alpha_1) \alpha_i = 0$$

with $P_i(\alpha_1) \in F[\alpha_1]$ for all i. Without loss of generality $P_i(\alpha_1) \in \mathbb{Z}[\alpha_1]$ in characteristic 0, so that in all cases $P_i(\alpha_1) \in R[\alpha_1] \subset R$.

Let F denote the prime field (\mathbb{Q} in characteristic 0 and \mathbb{F}_p in characteristic p).

Suppose $\alpha_1, \ldots, \alpha_n \in \mathcal{M}$ with $\alpha_i \in \alpha_{i+1} \mathcal{M}$ for all $i < n$, i.e.,

$$\alpha_1 R \subsetneq \alpha_2 R \subsetneq \cdots \subsetneq \alpha_n R.$$

We claim that these elements are linearly independent over $F(\alpha_1)$.

To see why, suppose

$$\sum_{i=1}^{n} P_i(\alpha_1) \alpha_i = 0$$

with $P_i(\alpha_1) \in F[\alpha_1]$ for all i. Without loss of generality $P_i(\alpha_1) \in \mathbb{Z}[\alpha_1]$ in characteristic 0, so that in all cases $P_i(\alpha_1) \in R[\alpha_1] \subset R$.

If not all $P_i(\alpha_1) = 0$,

Let F denote the prime field (\mathbb{Q} in characteristic 0 and \mathbb{F}_p in characteristic p).

Suppose $\alpha_1, \ldots, \alpha_n \in M$ with $\alpha_i \in \alpha_{i+1}M$ for all $i < n$, i.e.,

$$\alpha_1R \subsetneq \alpha_2R \subsetneq \cdots \subsetneq \alpha_nR.$$

We claim that these elements are linearly independent over $F(\alpha_1)$.

To see why, suppose

$$\sum_{i=1}^{n} P_i(\alpha_1)\alpha_i = 0$$

with $P_i(\alpha_1) \in F[\alpha_1]$ for all i. Without loss of generality $P_i(\alpha_1) \in \mathbb{Z}[\alpha_1]$ in characteristic 0, so that in all cases $P_i(\alpha_1) \in R[\alpha_1] \subset R$.

If not all $P_i(\alpha_1) = 0$, then without loss of generality they aren’t all divisible by α_1,

Math 681, Wednesday, February 24 February 24, 2021
Let F denote the prime field (\mathbb{Q} in characteristic 0 and \mathbb{F}_p in characteristic p).

Suppose $\alpha_1, \ldots, \alpha_n \in \mathcal{M}$ with $\alpha_i \in \alpha_{i+1} \mathcal{M}$ for all $i < n$, i.e.,

$$\alpha_1 R \subsetneq \alpha_2 R \subsetneq \cdots \subsetneq \alpha_n R.$$

We claim that these elements are linearly independent over $F(\alpha_1)$.

To see why, suppose

$$\sum_{i=1}^{n} P_i(\alpha_1) \alpha_i = 0$$

with $P_i(\alpha_1) \in F[\alpha_1]$ for all i. Without loss of generality $P_i(\alpha_1) \in \mathbb{Z}[\alpha_1]$ in characteristic 0, so that in all cases $P_i(\alpha_1) \in R[\alpha_1] \subset R$.

If not all $P_i(\alpha_1) = 0$, then without loss of generality they aren’t all divisible by α_1, so that there is a maximal index i_0 where $P_{i_0}(0) := a_{i_0} \neq 0$.
We have

\[-P_{i_0}(\alpha_1)\alpha_{i_0} = \sum_{i \neq i_0} P_i(\alpha_1)\alpha_i\]
We have

\[-P_{i_0}(\alpha_1)\alpha_{i_0} = \sum_{i \neq i_0} P_i(\alpha_1)\alpha_i\]

\[-P_{i_0}(\alpha_1) = \sum_{i < i_0} P_i(\alpha_1)\alpha_i/\alpha_{i_0} + \sum_{i > i_0} P_i(\alpha_1)\alpha_i/\alpha_{i_0}.\]
We have

\[-P_{i_0}(\alpha_1)\alpha_{i_0} = \sum_{i \neq i_0} P_i(\alpha_1)\alpha_i\]

\[-P_{i_0}(\alpha_1) = \sum_{i < i_0} P_i(\alpha_1)\frac{\alpha_i}{\alpha_{i_0}} + \sum_{i > i_0} P_i(\alpha_1)\frac{\alpha_i}{\alpha_{i_0}}.\]

Now \(\alpha_i, P_i(\alpha_1) \in R\) for all \(i\),
We have

\[-P_{i_0}(\alpha_1)\alpha_{i_0} = \sum_{i \neq i_0} P_i(\alpha_1)\alpha_i\]

\[-P_{i_0}(\alpha_1) = \sum_{i < i_0} P_i(\alpha_1)\alpha_i/\alpha_{i_0} + \sum_{i > i_0} P_i(\alpha_1)\alpha_i/\alpha_{i_0}.\]

Now \(\alpha_i, P_i(\alpha_1) \in R\) for all \(i\), \(\alpha_i/\alpha_{i_0} \in \mathcal{M}\) for all \(i < i_0\) by hypothesis,
We have

\[-P_{i_0}(\alpha_1)\alpha_{i_0} = \sum_{i \neq i_0} P_i(\alpha_1)\alpha_i\]

\[-P_{i_0}(\alpha_1) = \sum_{i < i_0} P_i(\alpha_1)\alpha_i/\alpha_{i_0} + \sum_{i > i_0} P_i(\alpha_1)\alpha_i/\alpha_{i_0}.\]

Now \(\alpha_i, P_i(\alpha_1) \in R\) for all \(i\), \(\alpha_i/\alpha_{i_0} \in M\) for all \(i < i_0\) by hypothesis, and \(P_i(\alpha_1)/\alpha_{i_0} \in M\) for all \(i > i_0\).
We have

\[-P_i(\alpha_1)\alpha_{i_0} = \sum_{i \neq i_0} P_i(\alpha_1)\alpha_i \]

\[-P_i(\alpha_1) = \sum_{i < i_0} P_i(\alpha_1)\alpha_i/\alpha_{i_0} + \sum_{i > i_0} P_i(\alpha_1)\alpha_i/\alpha_{i_0}. \]

Now \(\alpha_i, P_i(\alpha_1) \in R \) for all \(i \), \(\alpha_i/\alpha_{i_0} \in M \) for all \(i < i_0 \) by hypothesis, and \(P_i(\alpha_1)/\alpha_{i_0} \in M \) for all \(i > i_0 \) since \(\alpha_1 | P_i(\alpha_1) \) for \(i > i_0 \) by construction.
We have

\[-P_{i_0}(\alpha_1)\alpha_{i_0} = \sum_{i \neq i_0} P_i(\alpha_1)\alpha_i\]

\[-P_{i_0}(\alpha_1) = \sum_{i < i_0} P_i(\alpha_1)\alpha_i/\alpha_{i_0} + \sum_{i > i_0} P_i(\alpha_1)\alpha_i/\alpha_{i_0}.\]

Now \(\alpha_i, P_i(\alpha_1) \in R\) for all \(i\), \(\alpha_i/\alpha_{i_0} \in M\) for all \(i < i_0\) by hypothesis, and \(P_i(\alpha_1)/\alpha_{i_0} \in M\) for all \(i > i_0\) since \(\alpha_1|P_i(\alpha_1)\) for \(i > i_0\) by construction and \(\alpha_{i_0}|\alpha_1\) by hypothesis.
We have

$$-P_{i_0}(\alpha_1)\alpha_{i_0} = \sum_{i \neq i_0} P_i(\alpha_1)\alpha_i$$

$$-P_{i_0}(\alpha_1) = \sum_{i < i_0} P_i(\alpha_1)\alpha_i/\alpha_{i_0} + \sum_{i > i_0} P_i(\alpha_1)\alpha_i/\alpha_{i_0}.$$

Now $\alpha_i, P_i(\alpha_1) \in R$ for all i, $\alpha_i/\alpha_{i_0} \in M$ for all $i < i_0$ by hypothesis, and $P_i(\alpha_1)/\alpha_{i_0} \in M$ for all $i > i_0$ since $\alpha_1 | P_i(\alpha_1)$ for $i > i_0$ by construction and $\alpha_{i_0} | \alpha_1$ by hypothesis. Thus $P_{i_0}(\alpha_1) \in M$.

We have

\[-P_{i_0}(\alpha_1)\alpha_{i_0} = \sum_{i \neq i_0} P_i(\alpha_1)\alpha_i\]

\[-P_{i_0}(\alpha_1) = \sum_{i < i_0} P_i(\alpha_1)\alpha_i/\alpha_{i_0} + \sum_{i > i_0} P_i(\alpha_1)\alpha_i/\alpha_{i_0}.\]

Now \(\alpha_i, P_i(\alpha_1) \in R\) for all \(i\), \(\alpha_i/\alpha_{i_0} \in \mathcal{M}\) for all \(i < i_0\) by hypothesis, and \(P_i(\alpha_1)/\alpha_{i_0} \in \mathcal{M}\) for all \(i > i_0\) since \(\alpha_1|P_i(\alpha_1)\) for \(i > i_0\) by construction and \(\alpha_{i_0}|\alpha_1\) by hypothesis. Thus \(P_{i_0}(\alpha_1) \in \mathcal{M}\). Since \(\alpha_1|(P_i(\alpha_1) - a_{i_0})\),
We have

\[-P_{i_0}(\alpha_1)\alpha_{i_0} = \sum_{i \neq i_0} P_i(\alpha_1)\alpha_i\]

\[-P_{i_0}(\alpha_1) = \sum_{i < i_0} P_i(\alpha_1)\alpha_i/\alpha_{i_0} + \sum_{i > i_0} P_i(\alpha_1)\alpha_i/\alpha_{i_0}.\]

Now \(\alpha_i, P_i(\alpha_1) \in R\) for all \(i\), \(\alpha_i/\alpha_{i_0} \in M\) for all \(i < i_0\) by hypothesis, and \(P_i(\alpha_1)/\alpha_{i_0} \in M\) for all \(i > i_0\) since \(\alpha_1|P_i(\alpha_1)\) for \(i > i_0\) by construction and \(\alpha_{i_0}|\alpha_1\) by hypothesis. Thus \(P_{i_0}(\alpha_1) \in M\). Since \(\alpha_1|(P_i(\alpha_1) - a_{i_0})\), we see that \(a_{i_0} \in M\), too.
We have

\[-P_{i_0}(\alpha_1)\alpha_{i_0} = \sum_{i \neq i_0} P_i(\alpha_1)\alpha_i\]

\[-P_{i_0}(\alpha_1) = \sum_{i < i_0} P_i(\alpha_1)\alpha_i / \alpha_{i_0} + \sum_{i > i_0} P_i(\alpha_1)\alpha_i / \alpha_{i_0}.\]

Now $\alpha_i, P_i(\alpha_1) \in R$ for all i, $\alpha_i / \alpha_{i_0} \in \mathcal{M}$ for all $i < i_0$ by hypothesis, and $P_i(\alpha_1) / \alpha_{i_0} \in \mathcal{M}$ for all $i > i_0$ since $\alpha_1 | P_i(\alpha_1)$ for $i > i_0$ by construction and $\alpha_{i_0} | \alpha_1$ by hypothesis. Thus $P_{i_0}(\alpha_1) \in \mathcal{M}$. Since $\alpha_1 | (P_i(\alpha_1) - a_{i_0})$, we see that $a_{i_0} \in \mathcal{M}$, too.

But clearly $\mathcal{M} \cap F = \{0\}$.
We have

\[-P_{i_0}(\alpha_1)\alpha_{i_0} = \sum_{i \neq i_0} P_i(\alpha_1)\alpha_i\]

\[-P_{i_0}(\alpha_1) = \sum_{i < i_0} P_i(\alpha_1)\alpha_i/\alpha_{i_0} + \sum_{i > i_0} P_i(\alpha_1)\alpha_i/\alpha_{i_0}.\]

Now \(\alpha_i, P_i(\alpha_1) \in R\) for all \(i\), \(\alpha_i/\alpha_{i_0} \in M\) for all \(i < i_0\) by hypothesis, and \(P_i(\alpha_1)/\alpha_{i_0} \in M\) for all \(i > i_0\) since \(\alpha_1 | P_i(\alpha_1)\) for \(i > i_0\) by construction and \(\alpha_{i_0} | \alpha_1\) by hypothesis. Thus \(P_{i_0}(\alpha_1) \in M\). Since \(\alpha_1 | (P_i(\alpha_1) - a_{i_0})\), we see that \(a_{i_0} \in M\), too.

But clearly \(M \cap F = \{0\}\). This contradiction shows that \(\alpha_1, \ldots, \alpha_n\) are linearly independent over \(F(\alpha_1)\).
In the number field case $n \leq [K : \mathbb{Q}(\alpha_1)] \leq [K : \mathbb{Q}]$.
In the number field case \(n \leq [K : \mathbb{Q}(\alpha_1)] \leq [K : \mathbb{Q}] \).

In the function field case \(\alpha_1 \) is not in the field of constants.
In the number field case $n \leq [K : \mathbb{Q}(\alpha_1)] \leq [K : \mathbb{Q}]$.

In the function field case α_1 is not in the field of constants (it’s a non-zero element of \mathcal{M}, after all),
In the number field case \(n \leq [K : \mathbb{Q}(\alpha_1)] \leq [K : \mathbb{Q}] \).

In the function field case \(\alpha_1 \) is not in the field of constants (it’s a non-zero element of \(\mathcal{M} \), after all), whence it must be transcendental over \(\mathbb{F}_p \).
In the number field case $n \leq [K : \mathbb{Q}(\alpha_1)] \leq [K : \mathbb{Q}]$.

In the function field case α_1 is not in the field of constants (it’s a non-zero element of \mathcal{M}, after all), whence it must be transcendental over \mathbb{F}_p. Therefore $n \leq [K : \mathbb{F}_p(\alpha_1)]$, which is a finite integer depending only on α_1.
In the number field case $n \leq [K : \mathbb{Q}(\alpha_1)] \leq [K : \mathbb{Q}]$.

In the function field case α_1 is not in the field of constants (it’s a non-zero element of \mathcal{M}, after all), whence it must be transcendental over \mathbb{F}_p. Therefore $n \leq [K : \mathbb{F}_p(\alpha_1)]$, which is a finite integer depending only on α_1.

We remark that in the case of number fields we have a slightly more direct argument for the Proposition as follows.
In the number field case \(n \leq [K : \mathbb{Q}(\alpha_1)] \leq [K : \mathbb{Q}] \).

In the function field case \(\alpha_1 \) is not in the field of constants (it’s a non-zero element of \(\mathcal{M} \), after all), whence it must be transcendental over \(\mathbb{F}_p \). Therefore \(n \leq [K : \mathbb{F}_p(\alpha_1)] \), which is a finite integer depending only on \(\alpha_1 \).

We remark that in the case of number fields we have a slightly more direct argument for the Proposition as follows.

Let \(\mathcal{M} \) denote the unique maximal ideal of \(R \).
In the number field case $n \leq [K : \mathbb{Q}(\alpha_1)] \leq [K : \mathbb{Q}]$.

In the function field case α_1 is not in the field of constants (it’s a non-zero element of \mathcal{M}, after all), whence it must be transcendental over \mathbb{F}_p. Therefore $n \leq [K : \mathbb{F}_p(\alpha_1)]$, which is a finite integer depending only on α_1.

We remark that in the case of number fields we have a slightly more direct argument for the Proposition as follows.

Let \mathcal{M} denote the unique maximal ideal of R. Since $R \supset \mathfrak{O}_K$
In the number field case \(n \leq [K : \mathbb{Q}(\alpha_1)] \leq [K : \mathbb{Q}] \).

In the function field case \(\alpha_1 \) is not in the field of constants (it’s a non-zero element of \(\mathcal{M} \), after all), whence it must be transcendental over \(\mathbb{F}_p \). Therefore \(n \leq [K : \mathbb{F}_p(\alpha_1)] \), which is a finite integer depending only on \(\alpha_1 \).

We remark that in the case of number fields we have a slightly more direct argument for the Proposition as follows.

Let \(\mathcal{M} \) denote the unique maximal ideal of \(R \). Since \(R \supset \mathcal{O}_K \) we may restrict the canonical map \(R \to R/\mathcal{M} \) to \(\mathcal{O}_K \).
In the number field case \(n \leq [K : \mathbb{Q}(\alpha_1)] \leq [K : \mathbb{Q}] \).

In the function field case \(\alpha_1 \) is not in the field of constants (it’s a non-zero element of \(\mathcal{M} \), after all), whence it must be transcendental over \(\mathbb{F}_p \). Therefore \(n \leq [K : \mathbb{F}_p(\alpha_1)] \), which is a finite integer depending only on \(\alpha_1 \).

We remark that in the case of number fields we have a slightly more direct argument for the Proposition as follows.

Let \(\mathcal{M} \) denote the unique maximal ideal of \(R \). Since \(R \supset \mathcal{O}_K \) we may restrict the canonical map \(R \to R/\mathcal{M} \) to \(\mathcal{O}_K \) and get a kernel \(\mathfrak{P} = \mathcal{M} \cap \mathcal{O}_K \subseteq \mathcal{O}_K \).
In the number field case \(n \leq [K : \mathbb{Q}(\alpha_1)] \leq [K : \mathbb{Q}] \).

In the function field case \(\alpha_1 \) is not in the field of constants (it’s a non-zero element of \(\mathcal{M} \), after all), whence it must be transcendental over \(\mathbb{F}_p \). Therefore \(n \leq [K : \mathbb{F}_p(\alpha_1)] \), which is a finite integer depending only on \(\alpha_1 \).

We remark that in the case of number fields we have a slightly more direct argument for the Proposition as follows.

Let \(\mathcal{M} \) denote the unique maximal ideal of \(R \). Since \(R \supset \mathcal{O}_K \) we may restrict the canonical map \(R \to R/\mathcal{M} \) to \(\mathcal{O}_K \) and get a kernel \(\mathfrak{P} = \mathcal{M} \cap \mathcal{O}_K \subsetneq \mathcal{O}_K \) (\(1 \notin \mathcal{M} \), for example).
In the number field case \(n \leq [K : \mathbb{Q}(\alpha_1)] \leq [K : \mathbb{Q}] \).

In the function field case \(\alpha_1 \) is not in the field of constants (it’s a non-zero element of \(\mathcal{M} \), after all), whence it must be transcendental over \(\mathbb{F}_p \). Therefore \(n \leq [K : \mathbb{F}_p(\alpha_1)] \), which is a finite integer depending only on \(\alpha_1 \).

We remark that in the case of number fields we have a slightly more direct argument for the Proposition as follows.

Let \(\mathcal{M} \) denote the unique maximal ideal of \(R \). Since \(R \supset \mathcal{O}_K \) we may restrict the canonical map \(R \to R/\mathcal{M} \) to \(\mathcal{O}_K \) and get a kernel \(\mathfrak{p} = \mathcal{M} \cap \mathcal{O}_K \subsetneq \mathcal{O}_K \) (1 \(\notin \mathcal{M} \), for example). Since \(R/\mathcal{M} \) is a field,
In the number field case $n \leq [K : \mathbb{Q}(\alpha_1)] \leq [K : \mathbb{Q}]$.

In the function field case α_1 is not in the field of constants (it’s a non-zero element of \mathcal{M}, after all), whence it must be transcendental over \mathbb{F}_p. Therefore $n \leq [K : \mathbb{F}_p(\alpha_1)]$, which is a finite integer depending only on α_1.

We remark that in the case of number fields we have a slightly more direct argument for the Proposition as follows.

Let \mathcal{M} denote the unique maximal ideal of R. Since $R \supset \mathfrak{O}_K$ we may restrict the canonical map $R \to R/\mathcal{M}$ to \mathfrak{O}_K and get a kernel $\mathfrak{P} = \mathcal{M} \cap \mathfrak{O}_K \subseteq \mathfrak{O}_K \not\subseteq \mathfrak{O}_K$ ($1 \not\in \mathcal{M}$, for example). Since R/\mathcal{M} is a field, the image of the canonical map restricted to \mathfrak{O}_K is necessarily an integral domain,
In the number field case $n \leq [K : \mathbb{Q}(\alpha_1)] \leq [K : \mathbb{Q}]$.

In the function field case α_1 is not in the field of constants (it’s a non-zero element of \mathcal{M}, after all), whence it must be transcendental over \mathbb{F}_p. Therefore $n \leq [K : \mathbb{F}_p(\alpha_1)]$, which is a finite integer depending only on α_1.

We remark that in the case of number fields we have a slightly more direct argument for the Proposition as follows.

Let \mathcal{M} denote the unique maximal ideal of R. Since $R \supset \mathfrak{O}_K$ we may restrict the canonical map $R \to R/\mathcal{M}$ to \mathfrak{O}_K and get a kernel $\mathfrak{P} = \mathcal{M} \cap \mathfrak{O}_K \subsetneq \mathfrak{O}_K$ ($1 \notin \mathcal{M}$, for example). Since R/\mathcal{M} is a field, the image of the canonical map restricted to \mathfrak{O}_K is necessarily an integral domain, so that \mathfrak{P} is a prime ideal.
In the number field case \(n \leq [K : \mathbb{Q}(\alpha_1)] \leq [K : \mathbb{Q}] \).

In the function field case \(\alpha_1 \) is not in the field of constants (it’s a non-zero element of \(\mathcal{M} \), after all), whence it must be transcendental over \(\mathbb{F}_p \).

Therefore \(n \leq [K : \mathbb{F}_p(\alpha_1)] \), which is a finite integer depending only on \(\alpha_1 \).

We remark that in the case of number fields we have a slightly more direct argument for the Proposition as follows.

Let \(\mathcal{M} \) denote the unique maximal ideal of \(R \). Since \(R \supset \mathcal{O}_K \) we may restrict the canonical map \(R \rightarrow R/\mathcal{M} \) to \(\mathcal{O}_K \) and get a kernel \(\mathfrak{P} = \mathcal{M} \cap \mathcal{O}_K \subseteq \mathcal{O}_K \) (\(1 \notin \mathcal{M} \), for example). Since \(R/\mathcal{M} \) is a field, the image of the canonical map restricted to \(\mathcal{O}_K \) is necessarily an integral domain, so that \(\mathfrak{P} \) is a prime ideal. It certainly isn’t the zero ideal,
In the number field case $n \leq [K : \mathbb{Q}(\alpha_1)] \leq [K : \mathbb{Q}]$.

In the function field case α_1 is not in the field of constants (it’s a non-zero element of \mathcal{M}, after all), whence it must be transcendental over \mathbb{F}_p. Therefore $n \leq [K : \mathbb{F}_p(\alpha_1)]$, which is a finite integer depending only on α_1.

We remark that in the case of number fields we have a slightly more direct argument for the Proposition as follows.

Let \mathcal{M} denote the unique maximal ideal of R. Since $R \supset \mathcal{O}_K$ we may restrict the canonical map $R \to R/\mathcal{M}$ to \mathcal{O}_K and get a kernel $\mathfrak{P} = \mathcal{M} \cap \mathcal{O}_K \subseteq \mathcal{O}_K$ ($1 \notin \mathcal{M}$, for example). Since R/\mathcal{M} is a field, the image of the canonical map restricted to \mathcal{O}_K is necessarily an integral domain, so that \mathfrak{P} is a prime ideal. It certainly isn’t the zero ideal, since then all non-zero elements of \mathcal{O}_K would be units.
In the number field case $n \leq [K : \mathbb{Q}(\alpha_1)] \leq [K : \mathbb{Q}]$.

In the function field case α_1 is not in the field of constants (it’s a non-zero element of \mathcal{M}, after all), whence it must be transcendental over \mathbb{F}_p. Therefore $n \leq [K : \mathbb{F}_p(\alpha_1)]$, which is a finite integer depending only on α_1.

We remark that in the case of number fields we have a slightly more direct argument for the Proposition as follows.

Let \mathcal{M} denote the unique maximal ideal of R. Since $R \supset \mathcal{O}_K$ we may restrict the canonical map $R \to R/\mathcal{M}$ to \mathcal{O}_K and get a kernel $\mathfrak{P} = \mathcal{M} \cap \mathcal{O}_K \subseteq \mathcal{O}_K$ ($1 \notin \mathcal{M}$, for example). Since R/\mathcal{M} is a field, the image of the canonical map restricted to \mathcal{O}_K is necessarily an integral domain, so that \mathfrak{P} is a prime ideal. It certainly isn’t the zero ideal, since then all non-zero elements of \mathcal{O}_K would be units implying that R is the entire quotient field of K of \mathcal{O}_K.
In the number field case \(n \leq [K : \mathbb{Q}(\alpha_1)] \leq [K : \mathbb{Q}] \).

In the function field case \(\alpha_1 \) is not in the field of constants (it’s a non-zero element of \(\mathcal{M} \), after all), whence it must be transcendental over \(\mathbb{F}_p \). Therefore \(n \leq [K : \mathbb{F}_p(\alpha_1)] \), which is a finite integer depending only on \(\alpha_1 \).

We remark that in the case of number fields we have a slightly more direct argument for the Proposition as follows.

Let \(\mathcal{M} \) denote the unique maximal ideal of \(R \). Since \(R \supseteq \mathfrak{O}_K \) we may restrict the canonical map \(R \to R/\mathcal{M} \) to \(\mathfrak{O}_K \) and get a kernel \(\mathfrak{P} = \mathcal{M} \cap \mathfrak{O}_K \subseteq \mathfrak{O}_K \) (\(1 \notin \mathcal{M} \), for example). Since \(R/\mathcal{M} \) is a field, the image of the canonical map restricted to \(\mathfrak{O}_K \) is necessarily an integral domain, so that \(\mathfrak{P} \) is a prime ideal. It certainly isn’t the zero ideal, since then all non-zero elements of \(\mathfrak{O}_K \) would be units implying that \(R \) is the entire quotient field of \(K \) of \(\mathcal{O}_K \).

Thus \(\mathfrak{P} \) is a maximal ideal of \(\mathfrak{O}_K \).
In the number field case \(n \leq [K : \mathbb{Q}(\alpha_1)] \leq [K : \mathbb{Q}] \).

In the function field case \(\alpha_1 \) is not in the field of constants (it’s a non-zero element of \(\mathcal{M} \), after all), whence it must be transcendental over \(\mathbb{F}_p \).

Therefore \(n \leq [K : \mathbb{F}_p(\alpha_1)] \), which is a finite integer depending only on \(\alpha_1 \).

We remark that in the case of number fields we have a slightly more direct argument for the Proposition as follows.

Let \(\mathcal{M} \) denote the unique maximal ideal of \(R \). Since \(R \supset \mathcal{O}_K \) we may restrict the canonical map \(R \to R/\mathcal{M} \) to \(\mathcal{O}_K \) and get a kernel \(\mathfrak{p} = \mathcal{M} \cap \mathcal{O}_K \subsetneq \mathcal{O}_K \) (\(1 \notin \mathcal{M} \), for example). Since \(R/\mathcal{M} \) is a field, the image of the canonical map restricted to \(\mathcal{O}_K \) is necessarily an integral domain, so that \(\mathfrak{p} \) is a prime ideal. It certainly isn’t the zero ideal, since then all non-zero elements of \(\mathcal{O}_K \) would be units implying that \(R \) is the entire quotient field of \(K \) of \(\mathcal{O}_K \).

Thus \(\mathfrak{p} \) is a maximal ideal of \(\mathcal{O}_K \).

It is now almost trivial to show that \(R = \mathcal{O}_{\mathfrak{p}} \),
In the number field case $n \leq [K : \mathbb{Q}(\alpha_1)] \leq [K : \mathbb{Q}]$.

In the function field case α_1 is not in the field of constants (it’s a non-zero element of \mathcal{M}, after all), whence it must be transcendental over \mathbb{F}_p. Therefore $n \leq [K : \mathbb{F}_p(\alpha_1)]$, which is a finite integer depending only on α_1.

We remark that in the case of number fields we have a slightly more direct argument for the Proposition as follows.

Let \mathcal{M} denote the unique maximal ideal of R. Since $R \supset \mathcal{O}_K$ we may restrict the canonical map $R \to R/\mathcal{M}$ to \mathcal{O}_K and get a kernel $\mathfrak{P} = \mathcal{M} \cap \mathcal{O}_K \subseteq \mathcal{O}_K$ (1 $\not\in \mathcal{M}$, for example). Since R/\mathcal{M} is a field, the image of the canonical map restricted to \mathcal{O}_K is necessarily an integral domain, so that \mathfrak{P} is a prime ideal. It certainly isn’t the zero ideal, since then all non-zero elements of \mathcal{O}_K would be units implying that R is the entire quotient field of K of \mathcal{O}_K.

Thus \mathfrak{P} is a maximal ideal of \mathcal{O}_K.

It is now almost trivial to show that $R = \mathcal{O}_\mathfrak{P}$, which was shown to be a principal ideal domain in an exercise.
The argument above relies on the Fundamental Theorem, however,
The argument above relies on the Fundamental Theorem, however, whereas our proof of Proposition 1 is more self-contained.
The argument above relies on the Fundamental Theorem, however, whereas our proof of Proposition 1 is more self-contained.

Proposition (2)

Let \(|·|\) be a non-trivial non-archimedean absolute value on \(K\), where \(K\) is either a number field or a function field. Then

\[|\alpha| = \exp\left(-\rho v_R(\alpha)\right) \]

for some valuation ring \(R\) of \(K\) and \(\rho > 0\).
The argument above relies on the Fundamental Theorem, however, whereas our proof of Proposition 1 is more self-contained.

Proposition (2)

Let $|\cdot|$ be a non-trivial non-archimedean absolute value on K,

The argument above relies on the Fundamental Theorem, however, whereas our proof of Proposition 1 is more self-contained.

Proposition (2)

Let \(|\cdot| \) be a non-trivial non-archimedean absolute value on \(K \), where \(K \) is either a number field or a function field.
The argument above relies on the Fundamental Theorem, however, whereas our proof of Proposition 1 is more self-contained.

Proposition (2)

Let $|·|$ be a non-trivial non-archimedean absolute value on K, where K is either a number field or a function field. Then $|α| = \exp\left(-ρ v_R(α)\right)$ for some valuation ring R of K and $ρ > 0$.
Proof: By exercise #4 from the seventh homework assignment,
Proof: By exercise #4 from the seventh homework assignment,
\[R := \{ \alpha \in K : |\alpha| \leq 1 \} \]
is a valuation ring on \(K \).
Proof: By exercise #4 from the seventh homework assignment, \(R := \{ \alpha \in K : |\alpha| \leq 1 \} \) is a valuation ring on \(K \).

By Proposition 1 this must be a discrete valuation ring
Proof: By exercise #4 from the seventh homework assignment, \(R := \{ \alpha \in K : |\alpha| \leq 1 \} \) is a valuation ring on \(K \).

By Proposition 1 this must be a discrete valuation ring with maximal ideal \(\mathcal{M} = \{ \alpha \in K : |\alpha| < 1 \} \).
Proof: By exercise #4 from the seventh homework assignment,

\(R := \{ \alpha \in K : |\alpha| \leq 1 \} \) is a valuation ring on \(K \).

By Proposition 1 this must be a discrete valuation ring with maximal ideal

\[\mathcal{M} = \{ \alpha \in K : |\alpha| < 1 \} . \]

Write \(\mathcal{M} = \pi R \)
Proof: By exercise #4 from the seventh homework assignment,
\[R := \{ \alpha \in K : |\alpha| \leq 1 \} \] is a valuation ring on \(K \).

By Proposition 1 this must be a discrete valuation ring with maximal ideal

\[\mathcal{M} = \{ \alpha \in K : |\alpha| < 1 \}. \]

Write \(\mathcal{M} = \pi R \) and set \(\rho = \log |\pi^{-1}| > 0 \).
Proof: By exercise #4 from the seventh homework assignment,
\[R := \{ \alpha \in K : |\alpha| \leq 1 \} \] is a valuation ring on \(K \).

By Proposition 1 this must be a discrete valuation ring with maximal ideal

\[\mathcal{M} = \{ \alpha \in K : |\alpha| < 1 \}. \]

Write \(\mathcal{M} = \pi R \) and set \(\rho = \log |\pi^{-1}| > 0 \).

For any non-zero \(\alpha \in K \) we have
Proof: By exercise #4 from the seventh homework assignment,
\[R := \{ \alpha \in K : |\alpha| \leq 1 \} \] is a valuation ring on \(K \).

By Proposition 1 this must be a discrete valuation ring with maximal ideal
\[\mathcal{M} = \{ \alpha \in K : |\alpha| < 1 \}. \]

Write \(\mathcal{M} = \pi R \) and set \(\rho = \log |\pi^{-1}| > 0 \).

For any non-zero \(\alpha \in K \) we have \(\alpha = u\pi^{v_R(\alpha)} \) for some unit \(u \) by Lemma 3,
Proof: By exercise #4 from the seventh homework assignment,
\(R := \{ \alpha \in K : |\alpha| \leq 1 \} \) is a valuation ring on \(K \).

By Proposition 1 this must be a discrete valuation ring with maximal ideal
\[\mathfrak{M} = \{ \alpha \in K : |\alpha| < 1 \}. \]

Write \(\mathfrak{M} = \pi R \) and set \(\rho = \log |\pi^{-1}| > 0 \).

For any non-zero \(\alpha \in K \) we have \(\alpha = u\pi^{v_R(\alpha)} \) for some unit \(u \) by Lemma 3, so that \(|\alpha| = |\pi^{v(\alpha)}| = \exp (-\rho v(\alpha)) \).