We will continue the notational conventions already established, with one slight wrinkle. We will denote ideles, i.e., elements of \(K \times A = \text{GL}_1(KA) \), with upper-case Latin letters: A, B, ... The associated divisors will be denoted using the corresponding fraktur font: A, B, ... In other words, if \(A = (A_v) \) is an idele, then the corresponding divisor is \(A = \text{div}((A_v)) = \sum_v v \in M(K) \text{ord}_v(A_v) \cdot v \).

Recall that for an idele \(A = (A_v) \), \(\Lambda(A) = \{ (b_v) \in KA : b_v \in A^{-1}O_v \text{ for all places } v \in M(K) \} \).

The first step in our proof of the Riemann-Roch Theorem is the following proto-version.
We will continue the notational conventions already established, with one slight wrinkle.
We will continue the notational conventions already established, with one slight wrinkle. We will denote ideles,
We will continue the notational conventions already established, with one slight wrinkle. We will denote ideles, i.e., elements of $K_A^\times = \text{GL}_1(K_A)$,
We will continue the notational conventions already established, with one slight wrinkle. We will denote ideles, i.e., elements of $K_{A}^{\times} = \text{GL}_1(K_A)$, with upper-case Latin letters: A, B,
We will continue the notational conventions already established, with one slight wrinkle. We will denote ideles, i.e., elements of $K_A^\times = \text{GL}_1(K_A)$, with upper-case Latin letters: A, B, \ldots. The associated divisors will be denoted using the corresponding fraktur font:
Proving the Riemann-Roch Theorem

We will continue the notational conventions already established, with one slight wrinkle. We will denote ideles, i.e., elements of $K_A^\times = \text{GL}_1(K_A)$, with upper-case Latin letters: A, B, \ldots. The associated divisors will be denoted using the corresponding fraktur font: $\mathfrak{A}, \mathfrak{B}, \ldots$.
We will continue the notational conventions already established, with one slight wrinkle. We will denote ideles, i.e., elements of $K_A^\times = \text{GL}_1(K_A)$, with upper-case Latin letters: A, B, The associated divisors will be denoted using the corresponding fraktur font: \mathfrak{A}, \mathfrak{B}, In other words, if $A = (A_v)$ is an idele,
We will continue the notational conventions already established, with one slight wrinkle. We will denote ideles, i.e., elements of $K_A^\times = \text{GL}_1(K_A)$, with upper-case Latin letters: A, B, ... The associated divisors will be denoted using the corresponding fraktur font: \mathfrak{A}, \mathfrak{B}, ... In other words, if $A = (A_v)$ is an idele, then the corresponding divisor is
We will continue the notational conventions already established, with one slight wrinkle. We will denote ideles, i.e., elements of $K_{A}^{\times} = \text{GL}_1(K_{A})$, with upper-case Latin letters: A, B, \ldots. The associated divisors will be denoted using the corresponding fraktur font: $\mathfrak{A}, \mathfrak{B}, \ldots$.

In other words, if $A = (A_{v})$ is an idele, then the corresponding divisor is

$$\mathfrak{A} = \text{div} \left((A_{v})\right) = \sum_{v \in M(K)} \text{ord}_{v}(A_{v}) \cdot v.$$
We will continue the notational conventions already established, with one slight wrinkle. We will denote ideles, i.e., elements of $K_{\mathbb{A}}^{\times} = \text{GL}_1(K_{\mathbb{A}})$, with upper-case Latin letters: A, B, \ldots. The associated divisors will be denoted using the corresponding fraktur font: $\mathfrak{A}, \mathfrak{B}, \ldots$.

In other words, if $A = (A_v)$ is an idele, then the corresponding divisor is

$$\mathfrak{A} = \text{div} \left((A_v) \right) = \sum_{v \in M(K)} \text{ord}_v(A_v) \cdot v.$$

Recall that for an idele $A = (A_v)$,
We will continue the notational conventions already established, with one slight wrinkle. We will denote ideles, i.e., elements of $K_A^\times = \text{GL}_1(K_A)$, with upper-case Latin letters: A, B, \ldots. The associated divisors will be denoted using the corresponding fraktur font: $\mathfrak{A}, \mathfrak{B}, \ldots$. In other words, if $A = (A_v)$ is an idele, then the corresponding divisor is

$$\mathfrak{A} = \text{div} \left((A_v) \right) = \sum_{v \in M(K)} \text{ord}_v(A_v) \cdot v.$$

Recall that for an idele $A = (A_v)$,

$$\Lambda(A) = \{(b_v) \in K_A : b_v \in A_v^{-1} \mathcal{O}_v \text{ for all places } v \in M(K)\}.$$
We will continue the notational conventions already established, with one slight wrinkle. We will denote ideles, i.e., elements of $K_A^\times = \text{GL}_1(K_A)$, with upper-case Latin letters: A, B, ... The associated divisors will be denoted using the corresponding fraktur font: \mathcal{A}, \mathcal{B}, ... In other words, if $A = (A_v)$ is an idele, then the corresponding divisor is

$$\mathcal{A} = \text{div } ((A_v)) = \sum_{v \in M(K)} \text{ord}_v(A_v) \cdot v.$$

Recall that for an idele $A = (A_v)$,

$$\Lambda(A) = \{(b_v) \in K_A : b_v \in A_v^{-1}\mathcal{O}_v \text{ for all places } v \in M(K)\}.$$

The first step in our proof of the Riemann-Roch Theorem is the following proto-version.
Theorem (1)

Let \mathbb{K} be a function field with field of constants \mathbb{F}_{q}. Then for all ideles $A \in GL_1(\mathbb{K}A)$ with corresponding divisor A, $l(A) = \deg(A) + 1 - g + \dim \mathbb{F}_{q}(\mathbb{K}A \Lambda(\mathbb{A}) + \mathbb{K}A)$. Where $g := \dim \mathbb{F}_{q}(\mathbb{K}A \Lambda(\mathbb{I}) + \mathbb{K}A)$.

Proof:

We claim that for ideles A and B satisfying $\Lambda(A) \supseteq \Lambda(B)$, $\dim \mathbb{F}_{q}(\Lambda(A)/\Lambda(B)) = \deg(A) - \deg(B)$. (1)
Theorem (1)

Let K be a function field with field of constants \mathbb{F}_q.

Proof:
We claim that for ideles A and B satisfying $\Lambda(A) \supseteq \Lambda(B)$,
$$\dim \mathbb{F}_q(\Lambda(A)/\Lambda(B)) = \deg(A) - \deg(B).$$
Theorem (1)

Let K be a function field with field of constants \mathbb{F}_q. Then for all ideles $A \in \text{GL}_1(K_A)$ with corresponding divisor \mathfrak{A},
Theorem (1)

Let K be a function field with field of constants \mathbb{F}_q. Then for all ideles $A \in \text{GL}_1(K_A)$ with corresponding divisor \mathcal{A},

$$l(\mathcal{A}) = \deg(\mathcal{A}) + 1 - g + \dim_{\mathbb{F}_q} \left(\frac{K_A}{\Lambda(A) + K} \right),$$

where g is the genus of the function field K.
Theorem (1)

Let K be a function field with field of constants \mathbb{F}_q. Then for all ideles $A \in \text{GL}_1(K_A)$ with corresponding divisor \mathfrak{A},

$$l(\mathfrak{A}) = \deg(\mathfrak{A}) + 1 - g + \dim_{\mathbb{F}_q}\left(\frac{K_A}{\Lambda(\mathfrak{A}) + K}\right),$$

where

$$g := \dim_{\mathbb{F}_q}\left(\frac{K_A}{\Lambda(I) + K}\right).$$
Theorem (1)

Let K be a function field with field of constants $\overline{\mathbb{F}}_q$. Then for all ideles $A \in \text{GL}_1(K_{\mathfrak{A}})$ with corresponding divisor \mathfrak{A},

$$l(\mathfrak{A}) = \deg(\mathfrak{A}) + 1 - g + \dim_{\mathbb{F}_q}\left(\frac{K_{\mathfrak{A}}}{\Lambda(\mathfrak{A}) + K}\right),$$

where

$$g := \dim_{\mathbb{F}_q}\left(\frac{K_{\mathfrak{A}}}{\Lambda(I) + K}\right).$$

Proof:
Theorem (1)

Let \(K \) be a function field with field of constants \(\mathbb{F}_q \). Then for all ideles \(A \in \text{GL}_1(K_A) \) with corresponding divisor \(\mathfrak{A} \),

\[
l(\mathfrak{A}) = \deg(\mathfrak{A}) + 1 - g + \dim_{\mathbb{F}_q} \left(\frac{K_A}{\Lambda(A) + K} \right),
\]

where

\[
g := \dim_{\mathbb{F}_q} \left(\frac{K_A}{\Lambda(l) + K} \right).
\]

Proof: We claim that for ideles \(A \) and \(B \) satisfying \(\Lambda(A) \supseteq \Lambda(B) \),
Theorem (1)

Let K be a function field with field of constants \mathbb{F}_q. Then for all ideles $A \in \text{GL}_1(K_A)$ with corresponding divisor \mathcal{A},

$$l(\mathcal{A}) = \deg(\mathcal{A}) + 1 - g + \dim_{\mathbb{F}_q} \left(\frac{K_A}{\Lambda(A) + K} \right),$$

where

$$g := \dim_{\mathbb{F}_q} \left(\frac{K_A}{\Lambda(I) + K} \right).$$

Proof: We claim that for ideles A and B satisfying $\Lambda(A) \supseteq \Lambda(B)$,

$$\dim_{\mathbb{F}_q} \left(\Lambda(A)/\Lambda(B) \right) = \deg(\mathcal{A}) - \deg(\mathcal{B}).$$ (1)
To see why, it suffices to consider the case where $A_v^{-1} \mathfrak{O}_v = B_v^{-1} \mathfrak{O}_v$ for all but one place.
To see why, it suffices to consider the case where $A_v^{-1} \mathcal{O}_v = B_v^{-1} \mathcal{O}_v$ for all but one place. But this case is just the definition of the degree of a place and the order:
To see why, it suffices to consider the case where $A_v^{-1}\mathcal{O}_v = B_v^{-1}\mathcal{O}_v$ for all but one place. But this case is just the definition of the degree of a place and the order:

$$\dim_{\mathbb{F}_q} \left((A_v^{-1}\mathcal{O}_v) / (B_v^{-1}\mathcal{O}_v) \right)$$
To see why, it suffices to consider the case where $A_v^{-1} \mathcal{O}_v = B_v^{-1} \mathcal{O}_v$ for all but one place. But this case is just the definition of the degree of a place and the order:

$$\dim_{\mathbb{F}_q}(A_v^{-1} \mathcal{O}_v / B_v^{-1} \mathcal{O}_v) = [A_v^{-1} \mathcal{O}_v : B_v^{-1} \mathcal{O}_v] \deg(v)$$
To see why, it suffices to consider the case where $A_v^{-1}\mathcal{O}_v = B_v^{-1}\mathcal{O}_v$ for all but one place. But this case is just the definition of the degree of a place and the order:

$$\dim_{\mathbb{F}_q} \left(A_v^{-1}\mathcal{O}_v / B_v^{-1}\mathcal{O}_v \right) = [A_v^{-1}\mathcal{O}_v : B_v^{-1}\mathcal{O}_v] \deg(v) = (\ord_v(B_v^{-1}) - \ord_v(A_v^{-1})) \deg(v)$$
To see why, it suffices to consider the case where $A_v^{-1}\mathcal{O}_v = B_v^{-1}\mathcal{O}_v$ for all but one place. But this case is just the definition of the degree of a place and the order:

$$\dim_{\mathbb{F}_q} \left(A_v^{-1}\mathcal{O}_v / B_v^{-1}\mathcal{O}_v \right) = [A_v^{-1}\mathcal{O}_v : B_v^{-1}\mathcal{O}_v] \deg(v)$$

$$= (\text{ord}_v(B_v^{-1}) - \text{ord}_v(A_v^{-1})) \deg(v)$$

$$= (\text{ord}_v(A_v) - \text{ord}_v(B_v)) \deg(v).$$
To see why, it suffices to consider the case where $A_v^{-1}\mathcal{O}_v = B_v^{-1}\mathcal{O}_v$ for all but one place. But this case is just the definition of the degree of a place and the order:

$$\dim_{\mathbb{F}_q} (A_v^{-1}\mathcal{O}_v/B_v^{-1}\mathcal{O}_v) = [A_v^{-1}\mathcal{O}_v : B_v^{-1}\mathcal{O}_v] \deg(v)$$

$$= (\text{ord}_v(B_v^{-1}) - \text{ord}_v(A_v^{-1})) \deg(v)$$

$$= (\text{ord}_v(A_v) - \text{ord}_v(B_v)) \deg(v).$$

Next, still assuming $\Lambda(A) \supseteq \Lambda(B)$,
To see why, it suffices to consider the case where $A_v^{-1} \mathcal{O}_v = B_v^{-1} \mathcal{O}_v$ for all but one place. But this case is just the definition of the degree of a place and the order:

$$\dim_{\mathbb{F}_q} (A_v^{-1} \mathcal{O}_v / B_v^{-1} \mathcal{O}_v) = [A_v^{-1} \mathcal{O}_v : B_v^{-1} \mathcal{O}_v] \deg(v)$$

$$= (\text{ord}_v(B_v^{-1}) - \text{ord}_v(A_v^{-1})) \deg(v)$$

$$= (\text{ord}_v(A_v) - \text{ord}_v(B_v)) \deg(v).$$

Next, still assuming $\Lambda(A) \supseteq \Lambda(B)$, from the standard isomorphism theorems we have
To see why, it suffices to consider the case where $A_v^{-1}\mathcal{O}_v = B_v^{-1}\mathcal{O}_v$ for all but one place. But this case is just the definition of the degree of a place and the order:

$$\dim_{\mathbb{F}_q} (A_v^{-1}\mathcal{O}_v/B_v^{-1}\mathcal{O}_v) = [A_v^{-1}\mathcal{O}_v : B_v^{-1}\mathcal{O}_v] \deg(v)$$

$$= (\text{ord}_v(B_v^{-1}) - \text{ord}_v(A_v^{-1})) \deg(v)$$

$$= (\text{ord}_v(A_v) - \text{ord}_v(B_v)) \deg(v).$$

Next, still assuming $\Lambda(A) \supseteq \Lambda(B)$, from the standard isomorphism theorems we have

$$\frac{\Lambda(A)/\Lambda(B)}{\left((\Lambda(B) + \Lambda(A)) \cap K\right)/\Lambda(B)} \cong \frac{\Lambda(A)}{(\Lambda(B) + \Lambda(A)) \cap K}$$
To see why, it suffices to consider the case where $A_v^{-1} \mathcal{O}_v = B_v^{-1} \mathcal{O}_v$ for all but one place. But this case is just the definition of the degree of a place and the order:

$$\dim_{\mathbb{F}_q} (A_v^{-1} \mathcal{O}_v / B_v^{-1} \mathcal{O}_v) = [A_v^{-1} \mathcal{O}_v : B_v^{-1} \mathcal{O}_v] \deg(v)$$

$$= (\text{ord}_v(B_v^{-1}) - \text{ord}_v(A_v^{-1})) \deg(v)$$

$$= (\text{ord}_v(A_v) - \text{ord}_v(B_v)) \deg(v).$$

Next, still assuming $\Lambda(A) \supseteq \Lambda(B)$, from the standard isomorphism theorems we have

$$\frac{\Lambda(A)/\Lambda(B)}{\left((\Lambda(B) + \Lambda(A)) \cap K\right)/\Lambda(B)} \cong \frac{\Lambda(A)}{(\Lambda(B) + \Lambda(A)) \cap K} \cong \frac{\Lambda(A) + K}{\Lambda(B) + K}$$
To see why, it suffices to consider the case where $A_v^{-1} \mathcal{O}_v = B_v^{-1} \mathcal{O}_v$ for all but one place. But this case is just the definition of the degree of a place and the order:

$$\dim_{\mathbb{F}_q} \left(A_v^{-1} \mathcal{O}_v / B_v^{-1} \mathcal{O}_v \right) = [A_v^{-1} \mathcal{O}_v : B_v^{-1} \mathcal{O}_v] \ deg(v)$$

$$= (\ ord_v(B_v^{-1}) - \ ord_v(A_v^{-1})) \ deg(v)$$

$$= (\ ord_v(A_v) - \ ord_v(B_v)) \ deg(v).$$

Next, still assuming $\Lambda(A) \supseteq \Lambda(B)$, from the standard isomorphism theorems we have

$$\frac{\Lambda(A)/\Lambda(B)}{\left((\Lambda(B) + \Lambda(A)) \cap K \right) / \Lambda(B)} \cong \frac{\Lambda(A)}{(\Lambda(B) + \Lambda(A)) \cap K} \cong \frac{\Lambda(A) + K}{\Lambda(B) + K}$$

and

$$\frac{(\Lambda(B) + \Lambda(A)) \cap K}{\Lambda(B)} \cong \frac{\Lambda(A) \cap K}{\Lambda(B) \cap \Lambda(A) \cap K}$$
To see why, it suffices to consider the case where $A_v^{-1} \mathcal{O}_v = B_v^{-1} \mathcal{O}_v$ for all but one place. But this case is just the definition of the degree of a place and the order:

$$\dim_{\mathbb{F}_q} \left(A_v^{-1} \mathcal{O}_v / B_v^{-1} \mathcal{O}_v \right) = [A_v^{-1} \mathcal{O}_v : B_v^{-1} \mathcal{O}_v] \deg(v)$$

$$= \left(\text{ord}_v(B_v^{-1}) - \text{ord}_v(A_v^{-1}) \right) \deg(v)$$

$$= \left(\text{ord}_v(A_v) - \text{ord}_v(B_v) \right) \deg(v).$$

Next, still assuming $\Lambda(A) \supseteq \Lambda(B)$, from the standard isomorphism theorems we have

$$\frac{\Lambda(A)/\Lambda(B)}{\left((\Lambda(B) + \Lambda(A)) \cap K \right)/\Lambda(B)} \cong \frac{\Lambda(A)}{(\Lambda(B) + \Lambda(A)) \cap K} \cong \frac{\Lambda(A) + K}{\Lambda(B) + K}$$

and

$$\frac{(\Lambda(B) + \Lambda(A)) \cap K}{\Lambda(B)} \cong \frac{\Lambda(A) \cap K}{\Lambda(B) \cap \Lambda(A) \cap K} = \frac{\Lambda(A) \cap K}{\Lambda(B) \cap K}.$$
To see why, it suffices to consider the case where $A^{-1}_v \mathcal{O}_v = B^{-1}_v \mathcal{O}_v$ for all but one place. But this case is just the definition of the degree of a place and the order:

$$\dim_{\mathbb{F}_q} \left(A^{-1}_v \mathcal{O}_v / B^{-1}_v \mathcal{O}_v \right) = [A^{-1}_v \mathcal{O}_v : B^{-1}_v \mathcal{O}_v] \deg(v)$$

$$= (\text{ord}_v(B^{-1}_v) - \text{ord}_v(A^{-1}_v)) \deg(v)$$

$$= (\text{ord}_v(A_v) - \text{ord}_v(B_v)) \deg(v).$$

Next, still assuming $\Lambda(A) \supseteq \Lambda(B)$, from the standard isomorphism theorems we have

$$\frac{\Lambda(A)/\Lambda(B)}{\left((\Lambda(B) + \Lambda(A)) \cap \mathbb{K} \right)/\Lambda(B)} \cong \frac{\Lambda(A)}{(\Lambda(B) + \Lambda(A)) \cap \mathbb{K}} \cong \frac{\Lambda(A) + \mathbb{K}}{\Lambda(B) + \mathbb{K}}$$

and

$$\frac{(\Lambda(B) + \Lambda(A)) \cap \mathbb{K}}{\Lambda(B)} \cong \frac{\Lambda(A) \cap \mathbb{K}}{\Lambda(B) \cap \Lambda(A) \cap \mathbb{K}} = \frac{\Lambda(A) \cap \mathbb{K}}{\Lambda(B) \cap \mathbb{K}} = \frac{L(\mathfrak{A})}{L(\mathfrak{B})}.$$
Combining these observation with (1), we get

\[\text{deg}(A) - \text{deg}(B) = l(A) - l(B) + \dim F_q \left(\Lambda(A) + K \Lambda(B) + K \right). \]
Combining these observation with (1), we get

\[\deg(A) - \deg(B) = l(A) - l(B) + \dim_{\mathbb{F}_q} \left(\frac{\Lambda(A) + K}{\Lambda(B) + K} \right). \]

(2)
Combining these observations with (1), we get

\[\text{deg}(\mathcal{A}) - \text{deg}(\mathcal{B}) = l(\mathcal{A}) - l(\mathcal{B}) + \dim_{\mathbb{F}_q} \left(\frac{\Lambda(\mathcal{A}) + K}{\Lambda(\mathcal{B}) + K} \right). \] \hspace{1cm} (2)

By Lemma 2 from Monday,
Combining these observation with (1), we get

\[
\text{deg}(\mathcal{A}) - \text{deg}(\mathcal{B}) = l(\mathcal{A}) - l(\mathcal{B}) + \dim_{\mathbb{F}_q} \left(\frac{\Lambda(A) + K}{\Lambda(B) + K} \right). \tag{2}
\]

By Lemma 2 from Monday, there is an idele \(C \) such that \(\Lambda(C) + K = K_\mathcal{A} \).
Combining these observations with (1), we get

\[\deg(A) - \deg(B) = I(A) - I(B) + \dim_{\mathbb{F}_q} \left(\frac{\Lambda(A) + K}{\Lambda(B) + K} \right). \] (2)

By Lemma 2 from Monday, there is an idele \(C \) such that \(\Lambda(C) + K = K_A \).

Let \(B \) be an arbitrary idele and choose an idele \(A \) with \(\Lambda(A) = \Lambda(B) + \Lambda(C) \).
Combining these observation with (1), we get

\[\text{deg}(\mathcal{A}) - \text{deg}(\mathcal{B}) = l(\mathcal{A}) - l(\mathcal{B}) + \dim_{\mathbb{F}_q} \left(\frac{\Lambda(A) + K}{\Lambda(B) + K} \right). \]

(2)

By Lemma 2 from Monday, there is an idele \(C \) such that \(\Lambda(C) + K = K_A \).

Let \(B \) be an arbitrary idele and choose an idele \(A \) with \(\Lambda(A) = \Lambda(B) + \Lambda(C) \). Then \(\Lambda(A) \supseteq \Lambda(B) \) and by (2)
Combining these observation with (1), we get

\[\deg(\mathcal{U}) - \deg(\mathcal{V}) = l(\mathcal{U}) - l(\mathcal{V}) + \dim_{\mathbb{F}_q} \left(\frac{\Lambda(A) + K}{\Lambda(B) + K} \right). \quad (2)\]

By Lemma 2 from Monday, there is an idele \(C \) such that \(\Lambda(C) + K = K_A \).

Let \(B \) be an arbitrary idele and choose an idele \(A \) with \(\Lambda(A) = \Lambda(B) + \Lambda(C) \). Then \(\Lambda(A) \supseteq \Lambda(B) \) and by (2)

\[\deg(\mathcal{U}) - \deg(\mathcal{V}) = l(\mathcal{U}) - l(\mathcal{V}) + \dim_{\mathbb{F}_q} \left(\frac{K_A}{\Lambda(B) + K} \right).\]
Combining these observation with (1), we get

\[\deg(\mathcal{A}) - \deg(\mathcal{B}) = l(\mathcal{A}) - l(\mathcal{B}) + \dim_{\mathbb{F}_q} \left(\frac{\Lambda(A) + K}{\Lambda(B) + K} \right). \quad (2) \]

By Lemma 2 from Monday, there is an idele C such that $\Lambda(C) + K = K_A$. Let B be an arbitrary idele and choose an idele A with $\Lambda(A) = \Lambda(B) + \Lambda(C)$. Then $\Lambda(A) \supseteq \Lambda(B)$ and by (2)

\[\deg(\mathcal{A}) - \deg(\mathcal{B}) = l(\mathcal{A}) - l(\mathcal{B}) + \dim_{\mathbb{F}_q} \left(\frac{K_A}{\Lambda(B) + K} \right). \]

In particular, the last summand above is finite,
Combining these observation with (1), we get

$$\deg(A) - \deg(B) = l(A) - l(B) + \dim_{\mathbb{F}_q} \left(\frac{\Lambda(A) + K}{\Lambda(B) + K} \right). \tag{2}$$

By Lemma 2 from Monday, there is an idele C such that $\Lambda(C) + K = K_A$. Let B be an arbitrary idele and choose an idele A with $\Lambda(A) = \Lambda(B) + \Lambda(C)$. Then $\Lambda(A) \supseteq \Lambda(B)$ and by (2)

$$\deg(A) - \deg(B) = l(A) - l(B) + \dim_{\mathbb{F}_q} \left(\frac{K_A}{\Lambda(B) + K} \right).$$

In particular, the last summand above is finite, so that we may rewrite (2) in the form
Combining these observations with (1), we get

\[\deg(A) - \deg(B) = l(A) - l(B) + \text{dim}_{\mathbb{F}_q} \left(\frac{\Lambda(A) + K}{\Lambda(B) + K} \right). \]

(2)

By Lemma 2 from Monday, there is an idele \(C \) such that \(\Lambda(C) + K = K_A \).

Let \(B \) be an arbitrary idele and choose an idele \(A \) with \(\Lambda(A) = \Lambda(B) + \Lambda(C) \). Then \(\Lambda(A) \supseteq \Lambda(B) \) and by (2)

\[\deg(A) - \deg(B) = l(A) - l(B) + \text{dim}_{\mathbb{F}_q} \left(\frac{K_A}{\Lambda(B) + K} \right). \]

(3)

In particular, the last summand above is finite, so that we may rewrite (2) in the form

\[\deg(A) - \deg(B) = \]
Combining these observation with (1), we get

\[\deg(\mathcal{A}) - \deg(\mathcal{B}) = l(\mathcal{A}) - l(\mathcal{B}) + \dim_{\mathbb{F}_q} \left(\frac{\Lambda(A) + K}{\Lambda(B) + K} \right). \] \hspace{1cm} (2)

By Lemma 2 from Monday, there is an idele \(C \) such that \(\Lambda(C) + K = K_A \).

Let \(B \) be an arbitrary idele and choose an idele \(A \) with \(\Lambda(A) = \Lambda(B) + \Lambda(C) \). Then \(\Lambda(A) \supseteq \Lambda(B) \) and by (2)

\[\deg(\mathcal{A}) - \deg(\mathcal{B}) = l(\mathcal{A}) - l(\mathcal{B}) + \dim_{\mathbb{F}_q} \left(\frac{K_A}{\Lambda(B) + K} \right). \]

In particular, the last summand above is finite, so that we may rewrite (2) in the form

\[\deg(\mathcal{A}) - \deg(\mathcal{B}) = l(\mathcal{A}) - l(\mathcal{B}) + \dim_{\mathbb{F}_q} \left(\frac{K_A}{\Lambda(B) + K} \right) - \dim_{\mathbb{F}_q} \left(\frac{K_A}{\Lambda(A) + K} \right). \] \hspace{1cm} (3)
Now let A and B be arbitrary ideles and choose an idele D satisfying both $\Lambda(D) \supseteq \Lambda(A)$ and $\Lambda(D) \supseteq \Lambda(B)$.
Now let A and B be arbitrary ideles and choose an idele D satisfying both $\Lambda(D) \supseteq \Lambda(A)$ and $\Lambda(D) \supseteq \Lambda(B)$. Then we may use (3) on both pairs of ideles:

\[-\deg(A) - \dim \mathbb{F}_q(K_A \Lambda(A) + K_A) + \lambda(A) = -\deg(D) - \dim \mathbb{F}_q(K_D \Lambda(D) + K_A) + \lambda(D) = -\deg(B) - \dim \mathbb{F}_q(K_D \Lambda(B) + K_A) + \lambda(B).\]
Now let A and B be arbitrary ideles and choose an idele D satisfying both $\Lambda(D) \supseteq \Lambda(A)$ and $\Lambda(D) \supseteq \Lambda(B)$. Then we may use (3) on both pairs of ideles: D and A,

\[-\deg(A) - \dim F_q(K_A \Lambda(A) + K_A) + l(A) = -\deg(D) - \dim F_q(K_A \Lambda(D) + K_A) + l(D) \]

This shows that for any idele A, the quantity

\[-\deg(A) - \dim F_q(K_A \Lambda(A) + K_A) + l(A) \]

is the same.
Now let A and B be arbitrary ideles and choose an idele D satisfying both $\Lambda(D) \supseteq \Lambda(A)$ and $\Lambda(D) \supseteq \Lambda(B)$. Then we may use (3) on both pairs of ideles: D and A, and D and B.

\[-\deg(A) - \dim_{F_q} \left(K_A \Lambda(A) + K_A \right) + l(A) = -\deg(D) - \dim_{F_q} \left(K_A \Lambda(D) + K_A \right) + l(D) \]

This shows that for any idele A, the quantity $-\deg(A) - \dim_{F_q} \left(K_A \Lambda(A) + K_A \right) + l(A)$ is the same.
Now let A and B be arbitrary ideles and choose an idele D satisfying both $\Lambda(D) \supseteq \Lambda(A)$ and $\Lambda(D) \supseteq \Lambda(B)$. Then we may use (3) on both pairs of ideles: D and A, and D and B.

Using (3) twice now yields the following:
Now let A and B be arbitrary ideles and choose an idele D satisfying both $\Lambda(D) \supseteq \Lambda(A)$ and $\Lambda(D) \supseteq \Lambda(B)$. Then we may use (3) on both pairs of ideles: D and A, and D and B.

Using (3) twice now yields the following:

$$-\deg(\mathcal{A}) - \dim_{\mathbb{F}_q} \left(\frac{K_A}{\Lambda(A) + K} \right) + l(\mathcal{A})$$
Now let A and B be arbitrary ideles and choose an idele D satisfying both $\Lambda(D) \supseteq \Lambda(A)$ and $\Lambda(D) \supseteq \Lambda(B)$. Then we may use (3) on both pairs of ideles: D and A, and D and B.

Using (3) twice now yields the following:

\[
- \deg(\mathcal{U}) - \dim_{F_q} \left(\frac{K_A}{\Lambda(A) + K} \right) + l(\mathcal{U})
= - \deg(\mathcal{D}) - \dim_{F_q} \left(\frac{K_A}{\Lambda(D) + K} \right) + l(\mathcal{D})
\]
Now let A and B be arbitrary ideles and choose an idele D satisfying both $\Lambda(D) \supseteq \Lambda(A)$ and $\Lambda(D) \supseteq \Lambda(B)$. Then we may use (3) on both pairs of ideles: D and A, and D and B. Using (3) twice now yields the following:

$$- \deg(A) - \dim_{\mathbb{F}_q} \left(\frac{K_A}{\Lambda(A) + K} \right) + l(A)$$

$$= - \deg(D) - \dim_{\mathbb{F}_q} \left(\frac{K_A}{\Lambda(D) + K} \right) + l(D)$$

$$= - \deg(B) - \dim_{\mathbb{F}_q} \left(\frac{K_A}{\Lambda(B) + K} \right) + l(B).$$
Now let A and B be arbitrary ideles and choose an idele D satisfying both $\Lambda(D) \supseteq \Lambda(A)$ and $\Lambda(D) \supseteq \Lambda(B)$. Then we may use (3) on both pairs of ideles: D and A, and D and B.

Using (3) twice now yields the following:

$$- \deg(\mathcal{A}) - \dim_{\mathbb{F}_q} \left(\frac{K_A}{\Lambda(A) + K} \right) + l(\mathcal{A})$$

$$= - \deg(\mathcal{D}) - \dim_{\mathbb{F}_q} \left(\frac{K_A}{\Lambda(D) + K} \right) + l(\mathcal{D})$$

$$= - \deg(\mathcal{B}) - \dim_{\mathbb{F}_q} \left(\frac{K_A}{\Lambda(B) + K} \right) + l(\mathcal{B}).$$

This shows that for any idele A,
Now let A and B be arbitrary ideles and choose an idele D satisfying both $\Lambda(D) \supseteq \Lambda(A)$ and $\Lambda(D) \supseteq \Lambda(B)$. Then we may use (3) on both pairs of ideles: D and A, and D and B.

Using (3) twice now yields the following:

\[- \deg(\mathcal{A}) - \dim_{F_q} \left(\frac{K_A}{\Lambda(A) + K} \right) + I(\mathcal{A}) = - \deg(\mathcal{D}) - \dim_{F_q} \left(\frac{K_A}{\Lambda(D) + K} \right) + I(\mathcal{D}) = - \deg(\mathcal{B}) - \dim_{F_q} \left(\frac{K_A}{\Lambda(B) + K} \right) + I(\mathcal{B}).\]

This shows that for any idele A, the quantity

\[- \deg(\mathcal{A}) - \dim_{F_q} \left(\frac{K_A}{\Lambda(A) + K} \right) + I(\mathcal{A})\]

is the same.
As a particular case, we can consider the identity idele I.

\[\text{The corresponding divisor is obviously 0. We then get (recall that we previously proved $l(0) = 1$)} \]

\[-\deg(A) - \dim_{Fq}(K_A + K_A) + l(A) = -\deg(0) - \dim_{Fq}(K_A + K_A) + l(0) = 0 - g + 1. \]

Rearranging yields Theorem 1.
As a particular case, we can consider the identity idele I. The corresponding divisor is obviously 0.
As a particular case, we can consider the identity idele l. The corresponding divisor is obviously 0.

We then get

\[\text{Theorem 1.}\]
As a particular case, we can consider the identity idele \(I \). The corresponding divisor is obviously 0.

We then get (recall that we previously proved \(l(0) = 1 \))
As a particular case, we can consider the identity idele \(I \). The corresponding divisor is obviously 0.

We then get (recall that we previously proved \(l(0) = 1 \))

\[
-\deg(\mathcal{A}) - \dim_{\mathbb{F}_q} \left(\frac{K_A}{\Lambda(A) + K} \right) + l(\mathcal{A})
\
= \
\]
As a particular case, we can consider the identity idele \(I \). The corresponding divisor is obviously 0.

We then get (recall that we previously proved \(l(0) = 1 \))

\[
- \deg(\mathcal{A}) - \dim_{\mathbb{F}_q} \left(\frac{K_A}{\Lambda(A) + K} \right) + l(\mathcal{A})
\]

\[
= - \deg(0) - \dim_{\mathbb{F}_q} \left(\frac{K_A}{\Lambda(I) + K} \right) + l(0)
\]
As a particular case, we can consider the identity idele I. The corresponding divisor is obviously 0.

We then get (recall that we previously proved $I(0) = 1$)

$$- \deg(\mathcal{A}) - \dim_{\mathbb{F}_q} \left(\frac{K_{\mathcal{A}}}{\Lambda(A) + K} \right) + I(\mathcal{A})$$

$$= - \deg(0) - \dim_{\mathbb{F}_q} \left(\frac{K_{\mathcal{A}}}{\Lambda(I) + K} \right) + I(0)$$

$$= 0 - g + 1.$$
As a particular case, we can consider the identity idele I. The corresponding divisor is obviously 0.

We then get (recall that we previously proved $l(0) = 1$)

$$- \deg(\mathcal{A}) - \dim_{\mathbb{F}_q}(\frac{K_{\mathcal{A}}}{\Lambda(A) + K}) + l(\mathcal{A})$$

$$= - \deg(0) - \dim_{\mathbb{F}_q}(\frac{K_{\mathcal{A}}}{\Lambda(I) + K}) + l(0)$$

$$= 0 - g + 1.$$

Rearranging yields Theorem 1.
Theorem (Riemann’s Theorem)

The genus \(g \) may be characterized as the maximum of \(\deg(A) - l(A) + 1 \) over all divisors \(A \in \text{Div}(K) \).

Further, there is an integer \(z \), depending only on \(K \), such that \(\deg(A) - l(A) + 1 = g \) for all divisors \(A \) with \(\deg(A) \geq z \).

Proof: By Theorem 1 we have \(\deg(A) - l(A) + 1 = g - \dim \mathbb{F}^q(K_A \Lambda(A) + K) \) for all divisors \(A \).

The first part of Riemann's Theorem is thus that if a divisor \(A \) with \(K_A = \Lambda(A) + K \), which we proved on Monday. Now choose a divisor \(A_0 \) with \(K_{A_0} = \Lambda(A_0) + K \), i.e., one which satisfies \(\deg(A_0) - l(A_0) + 1 = g \), and set \(z = \deg(A_0) + g \). Then for any divisor \(A \) with \(\deg(A) \geq z \) we have \(l(A - A_0) \geq \deg(A - A_0) + 1 - g \geq z - \deg(A_0) + 1 - g \geq 1 \).
Theorem (Riemann’s Theorem)

The genus g may be characterized as the maximum of $\deg(A) - l(A) + 1$ over all divisors $A \in \text{Div}(K)$.
Theorem (Riemann’s Theorem)

The genus g may be characterized as the maximum of $\deg(A) - l(A) + 1$ over all divisors $A \in \text{Div}(K)$. Further, there is an integer z,

Proof:

By Theorem 1 we have $\deg(A) - l(A) + 1 = g - \dim \mathbb{F}_q(\Lambda(A) + K)$ for all divisors A. The first part of Riemann’s Theorem is thus that there exists a divisor A with $K_A = \Lambda(A) + K$, which we proved on Monday. Now choose a divisor A_0 with $K_{A_0} = \Lambda(A_0) + K$, i.e., one which satisfies $\deg(A_0) - l(A_0) + 1 = g$, and set $z = \deg(A_0) + g$. Then for any divisor A with $\deg(A) \geq z$ we have $l(A - A_0) \geq \deg(A - A_0) + 1 - g \geq z - \deg(A_0) + 1 - g \geq 1$.

Math 681, Monday, March 15

March 17, 2021
Theorem (Riemann’s Theorem)

The genus g may be characterized as the maximum of $\deg(\mathcal{A}) - l(\mathcal{A}) + 1$ over all divisors $\mathcal{A} \in \text{Div}(K)$. Further, there is an integer z, depending only on K,
Theorem (Riemann’s Theorem)

The genus g may be characterized as the maximum of $\deg(A) - l(A) + 1$ over all divisors $A \in \text{Div}(K)$. Further, there is an integer z, depending only on K, such that $\deg(A) - l(A) + 1 = g$ for all divisors A with $\deg(A) \geq z$.
Theorem (Riemann’s Theorem)

The genus g may be characterized as the maximum of $\deg(A) - l(A) + 1$ over all divisors $A \in \text{Div}(K)$. Further, there is an integer z, depending only on K, such that $\deg(A) - l(A) + 1 = g$ for all divisors A with $\deg(A) \geq z$.

Proof:
Theorem (Riemann’s Theorem)

The genus g may be characterized as the maximum of $\deg(\mathfrak{A}) - l(\mathfrak{A}) + 1$ over all divisors $\mathfrak{A} \in \text{Div}(K)$. Further, there is an integer z, depending only on K, such that $\deg(\mathfrak{A}) - l(\mathfrak{A}) + 1 = g$ for all divisors \mathfrak{A} with $\deg(\mathfrak{A}) \geq z$.

Proof: By Theorem 1 we have

$$\deg(\mathfrak{A}) - l(\mathfrak{A}) + 1 = g - \dim_{\mathbb{F}_q} \left(\frac{K_\mathfrak{A}}{\Lambda(A) + K} \right)$$

for all divisors \mathfrak{A}.
Theorem (Riemann’s Theorem)

The genus g may be characterized as the maximum of $\deg(A) - l(A) + 1$ over all divisors $A \in \text{Div}(K)$. Further, there is an integer z, depending only on K, such that $\deg(A) - l(A) + 1 = g$ for all divisors A with $\deg(A) \geq z$.

Proof: By Theorem 1 we have

$$\deg(A) - l(A) + 1 = g - \dim_{\mathbb{F}_q} \left(\frac{K_A}{\Lambda(A) + K} \right)$$

for all divisors A. The first part of Riemann’s Theorem is thus tantamount to the existence of a divisor A with $K_A = \Lambda(A) + K$.

Theorem (Riemann’s Theorem)

The genus g may be characterized as the maximum of $\deg(A) - l(A) + 1$ over all divisors $A \in \text{Div}(K)$. Further, there is an integer z, depending only on K, such that $\deg(A) - l(A) + 1 = g$ for all divisors A with $\deg(A) \geq z$.

Proof: By Theorem 1 we have

$$\deg(A) - l(A) + 1 = g - \dim_{\mathbb{F}_q} \left(\frac{K_A}{\Lambda(A) + K} \right)$$

for all divisors A. The first part of Riemann’s Theorem is thus tantamount to the existence of a divisor A with $K_A = \Lambda(A) + K$, which we proved on Monday.
Theorem (Riemann’s Theorem)

The genus g may be characterized as the maximum of $\deg(\mathcal{A}) - l(\mathcal{A}) + 1$ over all divisors $\mathcal{A} \in \text{Div}(K)$. Further, there is an integer z, depending only on K, such that $\deg(\mathcal{A}) - l(\mathcal{A}) + 1 = g$ for all divisors \mathcal{A} with $\deg(\mathcal{A}) \geq z$.

Proof: By Theorem 1 we have

$$\deg(\mathcal{A}) - l(\mathcal{A}) + 1 = g - \dim_{\mathbb{F}_q} \left(\frac{K_\mathcal{A}}{\Lambda(A) + K} \right)$$

for all divisors \mathcal{A}. The first part of Riemann’s Theorem is thus tantamount to the existence of a divisor \mathcal{A} with $K_\mathcal{A} = \Lambda(A) + K$, which we proved on Monday.

Now choose a divisor \mathcal{A}_0 with $K_\mathcal{A} = \Lambda(A_0) + K$,
Theorem (Riemann’s Theorem)

The genus g may be characterized as the maximum of $\deg(\mathcal{A}) - l(\mathcal{A}) + 1$ over all divisors $\mathcal{A} \in \text{Div}(K)$. Further, there is an integer z, depending only on K, such that $\deg(\mathcal{A}) - l(\mathcal{A}) + 1 = g$ for all divisors \mathcal{A} with $\deg(\mathcal{A}) \geq z$.

Proof: By Theorem 1 we have

$$\deg(\mathcal{A}) - l(\mathcal{A}) + 1 = g - \dim_{\mathbb{F}_q} \left(\frac{K_\mathcal{A}}{\Lambda(A) + K} \right)$$

for all divisors \mathcal{A}. The first part of Riemann’s Theorem is thus tantamount to the existence of a divisor \mathcal{A} with $K_\mathcal{A} = \Lambda(A) + K$, which we proved on Monday.

Now choose a divisor \mathcal{A}_0 with $K_\mathcal{A}_0 = \Lambda(A_0) + K$, i.e., one which satisfies $\deg(\mathcal{A}_0) - l(\mathcal{A}_0) + 1 = g$.

Theorem (Riemann’s Theorem)

The genus g may be characterized as the maximum of $\deg(\mathfrak{A}) - l(\mathfrak{A}) + 1$ over all divisors $\mathfrak{A} \in \text{Div}(K)$. Further, there is an integer z, depending only on K, such that $\deg(\mathfrak{A}) - l(\mathfrak{A}) + 1 = g$ for all divisors \mathfrak{A} with $\deg(\mathfrak{A}) \geq z$.

Proof: By Theorem 1 we have

$$\deg(\mathfrak{A}) - l(\mathfrak{A}) + 1 = g - \dim_{\mathbb{F}_q} \left(\frac{K_\mathfrak{A}}{\Lambda(A) + K} \right)$$

for all divisors \mathfrak{A}. The first part of Riemann’s Theorem is thus tantamount to the existence of a divisor \mathfrak{A} with $K_\mathfrak{A} = \Lambda(A) + K$, which we proved on Monday.

Now choose a divisor \mathfrak{A}_0 with $K_\mathfrak{A} = \Lambda(A_0) + K$, i.e., one which satisfies $\deg(\mathfrak{A}_0) - l(\mathfrak{A}_0) + 1 = g$, and set $z = \deg(\mathfrak{A}_0) + g$.
Theorem (Riemann’s Theorem)

The genus g may be characterized as the maximum of $\deg(\mathcal{A}) - l(\mathcal{A}) + 1$ over all divisors $\mathcal{A} \in \text{Div}(K)$. Further, there is an integer z, depending only on K, such that $\deg(\mathcal{A}) - l(\mathcal{A}) + 1 = g$ for all divisors \mathcal{A} with $\deg(\mathcal{A}) \geq z$.

Proof: By Theorem 1 we have

$$\deg(\mathcal{A}) - l(\mathcal{A}) + 1 = g - \dim_{F_q} \left(\frac{K_A}{\Lambda(A) + K} \right)$$

for all divisors \mathcal{A}. The first part of Riemann’s Theorem is thus tantamount to the existence of a divisor \mathcal{A} with $K_\mathcal{A} = \Lambda(A) + K$, which we proved on Monday.

Now choose a divisor \mathcal{A}_0 with $K_\mathcal{A} = \Lambda(A_0) + K$, i.e., one which satisfies $\deg(\mathcal{A}_0) - l(\mathcal{A}_0) + 1 = g$, and set $z = \deg(\mathcal{A}_0) + g$. Then for any divisor \mathcal{A} with $\deg(\mathcal{A}) \geq z$ we have
Theorem (Riemann’s Theorem)

The genus g may be characterized as the maximum of $\deg(A) - l(A) + 1$ over all divisors $A \in \text{Div}(K)$. Further, there is an integer z, depending only on K, such that $\deg(A) - l(A) + 1 = g$ for all divisors A with $\deg(A) \geq z$.

Proof: By Theorem 1 we have

$$\deg(A) - l(A) + 1 = g - \dim_{\mathbb{F}_q} \left(\frac{K_A}{\Lambda(A) + K} \right)$$

for all divisors A. The first part of Riemann’s Theorem is thus tantamount to the existence of a divisor A with $K_A = \Lambda(A) + K$, which we proved on Monday.

Now choose a divisor A_0 with $K_A = \Lambda(A_0) + K$, i.e., one which satisfies $\deg(A_0) - l(A_0) + 1 = g$, and set $z = \deg(A_0) + g$. Then for any divisor A with $\deg(A) \geq z$ we have

$$l(A - A_0) \geq \deg(A - A_0) + 1 - g \geq z - \deg(A_0) + 1 - g \geq 1.$$
The above shows that $L(\mathcal{A} - \mathcal{A}_0) \neq \{0\},$
The above shows that \(L(\mathcal{A} - \mathcal{A}_0) \neq \{0\} \), so take a non-zero \(\alpha \in L(\mathcal{A} - \mathcal{A}_0) \) and consider \(\mathcal{B} = \mathcal{A} + \text{div}(\alpha) \);
The above shows that \(L(\mathcal{A} - \mathcal{A}_0) \neq \{0\} \), so take a non-zero \(\alpha \in L(\mathcal{A} - \mathcal{A}_0) \) and consider \(\mathcal{B} = \mathcal{A} + \text{div}(\alpha) \); this divisor is linearly equivalent to \(\mathcal{A} \) and satisfies \(\mathcal{B} \geq \mathcal{A}_0 \).
The above shows that $L(\mathcal{A} - \mathcal{A}_0) \neq \{0\}$, so take a non-zero $\alpha \in L(\mathcal{A} - \mathcal{A}_0)$ and consider $\mathcal{B} = \mathcal{A} + \text{div}(\alpha)$; this divisor is linearly equivalent to \mathcal{A} and satisfies $\mathcal{B} \geq \mathcal{A}_0$.

We now have by (3) and the containment $\Lambda(\mathcal{B}) + K \supseteq \Lambda(\mathcal{A}_0) + K$
The above shows that $L(A - A_0) \neq \{0\}$, so take a non-zero $\alpha \in L(A - A_0)$ and consider $B = A + \text{div}(\alpha)$; this divisor is linearly equivalent to A and satisfies $B \geq A_0$.

We now have by (3) and the containment $\Lambda(B) + K \supseteq \Lambda(A_0) + K$

$$\deg(A) - l(A) = \deg(B) - l(B)$$
The above shows that \(L(\mathcal{A} - \mathcal{A}_0) \neq \{0\} \), so take a non-zero \(\alpha \in L(\mathcal{A} - \mathcal{A}_0) \) and consider \(\mathcal{B} = \mathcal{A} + \text{div}(\alpha) \); this divisor is linearly equivalent to \(\mathcal{A} \) and satisfies \(\mathcal{B} \geq \mathcal{A}_0 \).

We now have by (3) and the containment \(\Lambda(\mathcal{B}) + K \supseteq \Lambda(\mathcal{A}_0) + K \)

\[
\deg(\mathcal{A}) - l(\mathcal{A}) = \deg(\mathcal{B}) - l(\mathcal{B}) = \deg(\mathcal{A}_0) - l(\mathcal{A}_0)
\]
The above shows that $L(\mathcal{A} - \mathcal{A}_0) \neq \{0\}$, so take a non-zero \(\alpha \in L(\mathcal{A} - \mathcal{A}_0)\) and consider \(\mathcal{B} = \mathcal{A} + \text{div}(\alpha)\); this divisor is linearly equivalent to \(\mathcal{A}\) and satisfies \(\mathcal{B} \geq \mathcal{A}_0\).

We now have by (3) and the containment \(\Lambda(\mathcal{B}) + K \supseteq \Lambda(\mathcal{A}_0) + K\)

\[
\deg(\mathcal{A}) - \ell(\mathcal{A}) = \deg(\mathcal{B}) - \ell(\mathcal{B}) = \deg(\mathcal{A}_0) - \ell(\mathcal{A}_0) + \dim_{\mathbb{F}_q} \left(\frac{K_{\mathcal{A}}}{\Lambda(\mathcal{A}_0) + K} \right) - \dim_{\mathbb{F}_q} \left(\frac{K_{\mathcal{A}}}{\Lambda(\mathcal{B}) + K} \right)
\]

This completes our proof of Riemann's Theorem.
The above shows that $L(A - A_0) \neq \{0\}$, so take a non-zero $\alpha \in L(A - A_0)$ and consider $B = A + \text{div}(\alpha)$; this divisor is linearly equivalent to A and satisfies $B \geq A_0$.

We now have by (3) and the containment $\Lambda(B) + K \supseteq \Lambda(A_0) + K$

$$\text{deg}(A) - l(A) = \text{deg}(B) - l(B)$$
$$= \text{deg}(A_0) - l(A_0)$$
$$+ \dim_{\mathbb{F}_q} \left(\frac{K_A}{\Lambda(A_0) + K} \right) - \dim_{\mathbb{F}_q} \left(\frac{K_A}{\Lambda(B) + K} \right)$$
$$\geq \text{deg}(A_0) - l(A_0)$$
The above shows that $L(\mathcal{A} - \mathcal{A}_0) \neq \{0\}$, so take a non-zero $\alpha \in L(\mathcal{A} - \mathcal{A}_0)$ and consider $\mathcal{B} = \mathcal{A} + \text{div}(\alpha)$; this divisor is linearly equivalent to \mathcal{A} and satisfies $\mathcal{B} \geq \mathcal{A}_0$.

We now have by (3) and the containment $\Lambda(\mathcal{B}) + K \supseteq \Lambda(\mathcal{A}_0) + K$

\[
\deg(\mathcal{A}) - l(\mathcal{A}) = \deg(\mathcal{B}) - l(\mathcal{B})
\]
\[
= \deg(\mathcal{A}_0) - l(\mathcal{A}_0)
\]
\[
+ \dim_{F_q} \left(\frac{K_{\mathcal{A}}}{\Lambda(\mathcal{A}_0) + K} \right) - \dim_{F_q} \left(\frac{K_{\mathcal{A}}}{\Lambda(\mathcal{B}) + K} \right)
\]
\[
\geq \deg(\mathcal{A}_0) - l(\mathcal{A}_0)
\]
\[
= g - 1.
\]

This completes our proof of Riemann's Theorem.
The above shows that \(L(\mathcal{A} - \mathcal{A}_0) \neq \{0\} \), so take a non-zero \(\alpha \in L(\mathcal{A} - \mathcal{A}_0) \) and consider \(\mathcal{B} = \mathcal{A} + \text{div}(\alpha) \); this divisor is linearly equivalent to \(\mathcal{A} \) and satisfies \(\mathcal{B} \geq \mathcal{A}_0 \).

We now have by (3) and the containment \(\Lambda(B) + K \supseteq \Lambda(A_0) + K \)

\[
\deg(\mathcal{A}) - l(\mathcal{A}) = \deg(\mathcal{B}) - l(\mathcal{B}) \\
= \deg(\mathcal{A}_0) - l(\mathcal{A}_0) \\
+ \dim_{\mathbb{F}_q} \left(\frac{K_{\mathcal{A}}}{\Lambda(A_0) + K} \right) - \dim_{\mathbb{F}_q} \left(\frac{K_{\mathcal{A}}}{\Lambda(B) + K} \right) \\
\geq \deg(\mathcal{A}_0) - l(\mathcal{A}_0) \\
= g - 1.
\]

This completes our proof of Riemann’s Theorem.
Recall the notion of the (algebraic) *dual space* of a vector space:
Recall the notion of the (algebraic) *dual space* of a vector space: if V is a vector space over a field F,

...
Recall the notion of the (algebraic) dual space of a vector space: if V is a vector space over a field F, then the dual space V' consists of the linear transformations from V into F.

The Riemann-Roch Theorem is a consequence of Theorem 1 together with an appropriate realization of $K_A/\left(\Lambda(A) + K\right)$ as a dual space.
Recall the notion of the (algebraic) \textit{dual space} of a vector space: if \(V \) is a vector space over a field \(F \), then the dual space \(V' \) consists of the linear transformations from \(V \) into \(F \).

For a finite-dimensional vector space
Recall the notion of the (algebraic) dual space of a vector space: if V is a vector space over a field F, then the dual space V' consists of the linear transformations from V into F.

For a finite-dimensional vector space it’s well-known that the space and its dual are isomorphic,
Recall the notion of the (algebraic) *dual space* of a vector space: if V is a vector space over a field F, then the dual space V' consists of the linear transformations from V into F.

For a finite-dimensional vector space it’s well-known that the space and its dual are isomorphic, whence have the same dimension.
Recall the notion of the (algebraic) dual space of a vector space: if V is a vector space over a field F, then the dual space V' consists of the linear transformations from V into F.

For a finite-dimensional vector space it’s well-known that the space and its dual are isomorphic, whence have the same dimension.

The Riemann-Roch Theorem is a consequence of Theorem 1 together with an appropriate realization of $K_A/(\Lambda(A) + K)$ as a dual space.
Recall the notion of the (algebraic) dual space of a vector space: if V is a vector space over a field F, then the dual space V' consists of the linear transformations from V into F.

For a finite-dimensional vector space it’s well-known that the space and its dual are isomorphic, whence have the same dimension.

The Riemann-Roch Theorem is a consequence of Theorem 1 together with an appropriate realization of $K_{\Lambda}/(\Lambda(A) + K)$ as a dual space.

We’ll take the most direct approach possible
Recall the notion of the (algebraic) dual space of a vector space: if V is a vector space over a field F, then the dual space V' consists of the linear transformations from V into F.

For a finite-dimensional vector space it’s well-known that the space and its dual are isomorphic, whence have the same dimension.

The Riemann-Roch Theorem is a consequence of Theorem 1 together with an appropriate realization of $K_A/(\Lambda(A) + K)$ as a dual space.

We’ll take the most direct approach possible (given what we’ve already proven),
Recall the notion of the (algebraic) *dual space* of a vector space: if V is a vector space over a field F, then the dual space V' consists of the linear transformations from V into F.

For a finite-dimensional vector space it’s well-known that the space and its dual are isomorphic, whence have the same dimension.

The Riemann-Roch Theorem is a consequence of Theorem 1 together with an appropriate realization of $K_A/\left(\Lambda(A) + K\right)$ as a dual space.

We’ll take the most direct approach possible (given what we’ve already proven), but do note that there are many approaches,
Recall the notion of the (algebraic) dual space of a vector space: if V is a vector space over a field F, then the dual space V' consists of the linear transformations from V into F.

For a finite-dimensional vector space it’s well-known that the space and its dual are isomorphic, whence have the same dimension.

The Riemann-Roch Theorem is a consequence of Theorem 1 together with an appropriate realization of $K_A/(\Lambda(A) + K)$ as a dual space.

We’ll take the most direct approach possible (given what we’ve already proven), but do note that there are many approaches, each with their own attributes.
Definition

A Weil differential is an F_q-linear transformation $\omega: K_A \to F_q$ whose kernel contains a subset of the form $\Lambda(A) + K$ for some idele A.

For a given idele A we denote the collection of Weil differentials vanishing on $\Lambda(A) + K$ by $\Omega_K(A)$, and denote the set of all Weil differentials by Ω_K.

It's a trivial matter to confirm that Ω_K is a subspace of the dual space of K_A (viewed as a vector space over F_q in the obvious manner).

In fact, it's clear that $\Omega_K(A)$ is the dual space of $K_A / (\Lambda(A) + K)$, so that $\dim F_q(\Omega_K(A)) = \dim F_q(K_A / (\Lambda(A) + K))$.

Directly from the definition we see that $\Omega_K(A) \subseteq \Omega_K(B)$ whenever the associated divisors satisfy $A \leq B$, implying $\Lambda(A) \subseteq \Lambda(B)$.
Definition

A Weil differential is a \mathbb{F}_q-linear transformation $\omega : K_A \to \mathbb{F}_q$.
Definition

A Weil differential is an \mathbb{F}_q-linear transformation $\omega : K_A \to \mathbb{F}_q$ whose kernel contains a subset of the form $\Lambda(A) + K$ for some idele A.

For a given idele A we denote the collection of Weil differentials vanishing on $\Lambda(A) + K$ by $\Omega K_A(A)$, and denote the set of all Weil differentials by ΩK_A. It's a trivial matter to confirm that ΩK_A is a subspace of the dual space of K_A (viewed as a vector space over \mathbb{F}_q in the obvious manner).

In fact, it's clear that $\Omega K_A(A)$ is the dual space of $K_A / (\Lambda(A) + K)$, so that $\dim_{\mathbb{F}_q}(\Omega K_A(A)) = \dim_{\mathbb{F}_q}(K_A / (\Lambda(A) + K))$.

(4)

Directly from the definition we see that $\Omega K_A(A) \subseteq \Omega K_B(B)$ whenever the associated divisors satisfy $A \leq B$, implying $\Lambda(A) \subseteq \Lambda(B)$.

A Weil differential is an \mathbb{F}_q-linear transformation $\omega : K_A \to \mathbb{F}_q$ whose kernel contains a subset of the form $\Lambda(A) + K$ for some idele A. For a given idele A we denote the collection of Weil differentials vanishing on $\Lambda(A) + K$ by $\Omega_K(A)$,
A **Weil differential** is an \mathbb{F}_q-linear transformation $\omega : K_A \to \mathbb{F}_q$ whose kernel contains a subset of the form $\Lambda(A) + K$ for some idele A. For a given idele A we denote the collection of Weil differentials vanishing on $\Lambda(A) + K$ by $\Omega_K(A)$, and denote the set of all Weil differentials by Ω_K. It's a trivial matter to confirm that Ω_K is a subspace of the dual space of K_A (viewed as a vector space over \mathbb{F}_q in the obvious manner). In fact, it's clear that $\Omega_K(A)$ is the dual space of $K_A/\left(\Lambda(A) + K\right)$, so that $\dim \mathbb{F}_q(\Omega_K(A)) = \dim \mathbb{F}_q(K_A/\left(\Lambda(A) + K\right))$. Directly from the definition we see that $\Omega_K(A) \subseteq \Omega_K(B)$ whenever the associated divisors satisfy $A \leq B$, implying $\Lambda(A) \subseteq \Lambda(B)$.
Definition

A Weil differential is an \mathbb{F}_q-linear transformation $\omega : K_A \rightarrow \mathbb{F}_q$ whose kernel contains a subset of the form $\Lambda(A) + K$ for some idele A. For a given idele A we denote the collection of Weil differentials vanishing on $\Lambda(A) + K$ by $\Omega_K(A)$, and denote the set of all Weil differentials by Ω_K.

It’s a trivial matter to confirm that Ω_K is a subspace of the dual space of K_A.
A Weil differential is an \mathbb{F}_q-linear transformation $\omega : K_A \to \mathbb{F}_q$ whose kernel contains a subset of the form $\Lambda(A) + K$ for some idele A. For a given idele A we denote the collection of Weil differentials vanishing on $\Lambda(A) + K$ by $\Omega_K(A)$, and denote the set of all Weil differentials by Ω_K.

It’s a trivial matter to confirm that Ω_K is a subspace of the dual space of K_A (viewed as a vector space over \mathbb{F}_q in the obvious manner).
A Weil differential is an \mathbb{F}_q-linear transformation $\omega : K_A \to \mathbb{F}_q$ whose kernel contains a subset of the form $\Lambda(A) + K$ for some idele A. For a given idele A we denote the collection of Weil differentials vanishing on $\Lambda(A) + K$ by $\Omega_K(A)$, and denote the set of all Weil differentials by Ω_K.

It’s a trivial matter to confirm that Ω_K is a subspace of the dual space of K_A (viewed as a vector space over \mathbb{F}_q in the obvious manner).

In fact, it’s clear that $\Omega_K(A)$ is the dual space of $K_A/(\Lambda(A) + K)$,
Definition

A Weil differential is an \mathbb{F}_q-linear transformation $\omega : K_A \rightarrow \mathbb{F}_q$ whose kernel contains a subset of the form $\Lambda(A) + K$ for some idele A. For a given idele A we denote the collection of Weil differentials vanishing on $\Lambda(A) + K$ by $\Omega_K(A)$, and denote the set of all Weil differentials by Ω_K.

It’s a trivial matter to confirm that Ω_K is a subspace of the dual space of K_A (viewed as a vector space over \mathbb{F}_q in the obvious manner).

In fact, it’s clear that $\Omega_K(A)$ is the dual space of $K_A/(\Lambda(A) + K)$, so that

$$\dim_{\mathbb{F}_q} (\Omega_K(A)) = \dim_{\mathbb{F}_q} \left(\frac{K_A}{\Lambda(A) + K} \right).$$

(4)
Definition

A Weil differential is an \mathbb{F}_q-linear transformation $\omega : K_A \to \mathbb{F}_q$ whose kernel contains a subset of the form $\Lambda(A) + K$ for some idele A. For a given idele A we denote the collection of Weil differentials vanishing on $\Lambda(A) + K$ by $\Omega_K(A)$, and denote the set of all Weil differentials by Ω_K.

It’s a trivial matter to confirm that Ω_K is a subspace of the dual space of K_A (viewed as a vector space over \mathbb{F}_q in the obvious manner).

In fact, it’s clear that $\Omega_K(A)$ is the dual space of $K_A/ (\Lambda(A) + K)$, so that

$$\dim_{\mathbb{F}_q} (\Omega_K(A)) = \dim_{\mathbb{F}_q} \left(\frac{K_A}{\Lambda(A) + K} \right). \quad (4)$$

Directly from the definition we see that $\Omega_K(A) \subseteq \Omega_K(\mathcal{B})$ whenever the associated divisors satisfy $A \leq \mathcal{B}$,
A **Weil differential** is an \(\mathbb{F}_q \)-linear transformation \(\omega : K_A \to \mathbb{F}_q \) whose kernel contains a subset of the form \(\Lambda(A) + K \) for some idele \(A \). For a given idele \(A \) we denote the collection of Weil differentials vanishing on \(\Lambda(A) + K \) by \(\Omega_K(A) \), and denote the set of all Weil differentials by \(\Omega_K \).

It’s a trivial matter to confirm that \(\Omega_K \) is a subspace of the dual space of \(K_A \) (viewed as a vector space over \(\mathbb{F}_q \) in the obvious manner).

In fact, it’s clear that \(\Omega_K(A) \) is the dual space of \(K_A/(\Lambda(A) + K) \), so that

\[
\dim_{\mathbb{F}_q} (\Omega_K(A)) = \dim_{\mathbb{F}_q} \left(\frac{K_A}{\Lambda(A) + K} \right). \tag{4}
\]

Directly from the definition we see that \(\Omega_K(A) \subseteq \Omega_K(B) \) whenever the associated divisors satisfy \(A \leq B \), implying \(\Lambda(A) \subseteq \Lambda(B) \).
We may also view Ω_K as a vector space over K as follows.

For $\alpha \in K$ and $\omega \in \Omega_K$, set

$$\alpha \omega \left((a_v) \right) = \omega \left(\alpha a_v \right)$$

for all $(a_v) \in K A$.

In particular, note that if $\alpha \neq 0$ and ω vanishes on $\Lambda(A) + K$, then $\alpha \omega$ vanishes on $\Lambda(\alpha A) + K$.

Proposition (1)

As a vector space over K, Ω_K has dimension 1.

Proof:

We first note that $\Omega_K \neq \{0\}$. Indeed, by Theorem 1 we must have a non-zero element of $\Omega_K(A)$ whenever the associated divisor A has degree less than -1, say.
We may also view Ω_K as a vector space over K as follows.

For $\alpha \in K$ and $\omega \in \Omega_K$,

\[\alpha \omega ((a^v)) = \omega ((\alpha a^v)) \] for all $(a^v) \in K^A$.

In particular, note that if $\alpha \neq 0$ and ω vanishes on $\Lambda(A) + K$, then $\alpha \omega$ vanishes on $\Lambda(\alpha A) + K$.

Proposition (1)

As a vector space over K, Ω_K has dimension 1.

Proof: We first note that $\Omega_K \neq \{0\}$.

Indeed, by Theorem 1 we must have a non-zero element of $\Omega_K(A)$ whenever the associated divisor A has degree less than -1, say.
We may also view Ω_K as a vector space over K as follows. For $\alpha \in K$ and $\omega \in \Omega_K$, set

$$\alpha \omega((a_v)) = \omega((\alpha a_v))$$

for all $(a_v) \in K_A$.

Proposition (1) As a vector space over K, Ω_K has dimension 1.

Proof: We first note that $\Omega_K \neq \{0\}$. Indeed, by Theorem 1 we must have a non-zero element of Ω_K whenever the associated divisor A has degree less than -1, say.
We may also view Ω_K as a vector space over K as follows.

For $\alpha \in K$ and $\omega \in \Omega_K$, set

$$\alpha \omega((a_v)) = \omega((\alpha a_v))$$

for all $(a_v) \in K_A$. In particular, note that if $\alpha \neq 0$ and ω vanishes on $\Lambda(A) + K$,

Proposition (1)

As a vector space over K, Ω_K has dimension 1.

Proof:

We first note that $\Omega_K \neq \{0\}$. Indeed, by Theorem 1 we must have a non-zero element of Ω_K whenever the associated divisor A has degree less than -1, say.
We may also view Ω_K as a vector space over K as follows.

For $\alpha \in K$ and $\omega \in \Omega_K$, set

$$\alpha \omega ((a_v)) = \omega ((\alpha a_v))$$

for all $(a_v) \in K_A$. In particular, note that if $\alpha \neq 0$ and ω vanishes on $\Lambda(A) + K$, then $\alpha \omega$ vanishes on $\Lambda(\alpha A) + K$.
We may also view Ω_K as a vector space over K as follows.

For $\alpha \in K$ and $\omega \in \Omega_K$, set

$$\alpha \omega((a_v)) = \omega((\alpha a_v))$$

for all $(a_v) \in K_A$. In particular, note that if $\alpha \neq 0$ and ω vanishes on $\Lambda(A) + K$, then $\alpha \omega$ vanishes on $\Lambda(\alpha A) + K$.

Proposition (1)
We may also view Ω_K as a vector space over K as follows.

For $\alpha \in K$ and $\omega \in \Omega_K$, set

$$\alpha \omega((a_v)) = \omega((\alpha a_v))$$

for all $(a_v) \in K_A$. In particular, note that if $\alpha \neq 0$ and ω vanishes on $\Lambda(A) + K$, then $\alpha \omega$ vanishes on $\Lambda(\alpha A) + K$.

Proposition (1)

As a vector space over K, Ω_K has dimension 1.
We may also view Ω_K as a vector space over K as follows.

For $\alpha \in K$ and $\omega \in \Omega_K$, set
\[
\alpha \omega (a_v) = \omega (\alpha a_v)
\]
for all $(a_v) \in K_A$. In particular, note that if $\alpha \neq 0$ and ω vanishes on $\Lambda(A) + K$, then $\alpha \omega$ vanishes on $\Lambda(\alpha A) + K$.

Proposition (1)

As a vector space over K, Ω_K has dimension 1.

Proof:
We may also view Ω_K as a vector space over K as follows.
For $\alpha \in K$ and $\omega \in \Omega_K$, set

$$\alpha \omega((a_v)) = \omega((\alpha a_v))$$

for all $(a_v) \in K_A$. In particular, note that if $\alpha \neq 0$ and ω vanishes on $\Lambda(A) + K$, then $\alpha \omega$ vanishes on $\Lambda(\alpha A) + K$.

Proposition (1)

As a vector space over K, Ω_K has dimension 1.

Proof: We first note that $\Omega_K \neq \{0\}$.
We may also view Ω_K as a vector space over K as follows. For $\alpha \in K$ and $\omega \in \Omega_K$, set

$$\alpha \omega((a_v)) = \omega((\alpha a_v))$$

for all $(a_v) \in K_A$. In particular, note that if $\alpha \neq 0$ and ω vanishes on $\Lambda(A) + K$, then $\alpha \omega$ vanishes on $\Lambda(\alpha A) + K$.

Proposition (1)

As a vector space over K, Ω_K has dimension 1.

Proof: We first note that $\Omega_K \neq \{0\}$. Indeed, by Theorem 1 we must have a non-zero element of $\Omega_K(A)$ whenever the associated divisor \mathfrak{A} has degree less than -1, say.
Fix a non-zero \(\omega \in \Omega_K \);
Fix a non-zero $\omega \in \Omega_K$; we must show that $\Omega_K = \omega K$.
Fix a non-zero $\omega \in \Omega_K$; we must show that $\Omega_K = \omega K$.

Towards that end, suppose $\omega' \in \Omega_K$.
Fix a non-zero $\omega \in \Omega_K$; we must show that $\Omega_K = \omega K$.

Towards that end, suppose $\omega' \in \Omega_K$. If $\omega' = 0$, then $\omega' = 0\omega$ and we’re done,
Fix a non-zero $\omega \in \Omega_K$; we must show that $\Omega_K = \omega K$.

Towards that end, suppose $\omega' \in \Omega_K$. If $\omega' = 0$, then $\omega' = 0\omega$ and we’re done, so we will now assume $\omega' \neq 0$.

Math 681, Monday, March 15

March 17, 2021
Fix a non-zero $\omega \in \Omega_K$; we must show that $\Omega_K = \omega K$.

Towards that end, suppose $\omega' \in \Omega_K$. If $\omega' = 0$, then $\omega' = 0\omega$ and we’re done, so we will now assume $\omega' \neq 0$.

Since $\omega, \omega' \in \Omega_K$, we have...
Fix a non-zero $\omega \in \Omega_K$; we must show that $\Omega_K = \omega K$.

Towards that end, suppose $\omega' \in \Omega_K$. If $\omega' = 0$, then $\omega' = 0\omega$ and we’re done, so we will now assume $\omega' \neq 0$.

Since $\omega, \omega' \in \Omega_K$, there are ideles A and A' with $\omega \in \Omega_K(A)$ and $\omega' \in \Omega_K(A')$.

Fix a non-zero \(\omega \in \Omega_K \); we must show that \(\Omega_K = \omega K \).

Towards that end, suppose \(\omega' \in \Omega_K \). If \(\omega' = 0 \), then \(\omega' = 0\omega \) and we’re done, so we will now assume \(\omega' \neq 0 \).

Since \(\omega, \omega' \in \Omega_K \), there are ideles \(A \) and \(A' \) with \(\omega \in \Omega_K(A) \) and \(\omega' \in \Omega_K(A') \).
(These ideles are certainly not unique.)
Fix a non-zero $\omega \in \Omega_K$; we must show that $\Omega_K = \omega K$.

Towards that end, suppose $\omega' \in \Omega_K$. If $\omega' = 0$, then $\omega' = 0\omega$ and we’re done, so we will now assume $\omega' \neq 0$.

Since $\omega, \omega' \in \Omega_K$, there are ideles A and A' with $\omega \in \Omega_K(A)$ and $\omega' \in \Omega_K(A')$.

(These ideles are certainly not unique. Indeed, if $\omega \in \Omega_K(A)$,
Fix a non-zero $\omega \in \Omega_K$; we must show that $\Omega_K = \omega K$.

Towards that end, suppose $\omega' \in \Omega_K$. If $\omega' = 0$, then $\omega' = 0\omega$ and we’re done, so we will now assume $\omega' \neq 0$.

Since $\omega, \omega' \in \Omega_K$, there are ideles A and A' with $\omega \in \Omega_K(A)$ and $\omega' \in \Omega_K(A')$.

(These ideles are certainly not unique. Indeed, if $\omega \in \Omega_K(A)$, then $\omega \in \Omega_K(B)$ whenever $B \leq A$.

Math 681, Monday, March 15

Math 681, Monday, March 15
Fix a non-zero $\omega \in \Omega_K$; we must show that $\Omega_K = \omega K$.

Towards that end, suppose $\omega' \in \Omega_K$. If $\omega' = 0$, then $\omega' = 0\omega$ and we’re done, so we will now assume $\omega' \neq 0$.

Since $\omega, \omega' \in \Omega_K$, there are ideles A and A' with $\omega \in \Omega_K(A)$ and $\omega' \in \Omega_K(A')$.

(These ideles are certainly not unique. Indeed, if $\omega \in \Omega_K(A)$, then $\omega \in \Omega_K(B)$ whenever $B \leq A$. Nevertheless, we may certainly fix/choose such ideles.)
Fix a non-zero $\omega \in \Omega_K$; we must show that $\Omega_K = \omega K$.

Towards that end, suppose $\omega' \in \Omega_K$. If $\omega' = 0$, then $\omega' = 0\omega$ and we’re done, so we will now assume $\omega' \neq 0$.

Since $\omega, \omega' \in \Omega_K$, there are ideles A and A' with $\omega \in \Omega_K(A)$ and $\omega' \in \Omega_K(A')$.

(These ideles are certainly not unique. Indeed, if $\omega \in \Omega_K(A)$, then $\omega \in \Omega_K(B)$ whenever $B \leq A$. Nevertheless, we may certainly fix/choose such ideles.)

For a given idele B consider the \mathbb{F}_q-linear and one-to-one maps
Fix a non-zero \(\omega \in \Omega_K \); we must show that \(\Omega_K = \omega K \).

Towards that end, suppose \(\omega' \in \Omega_K \). If \(\omega' = 0 \), then \(\omega' = 0\omega \) and we’re done, so we will now assume \(\omega' \neq 0 \).

Since \(\omega, \omega' \in \Omega_K \), there are ideles \(A \) and \(A' \) with \(\omega \in \Omega_K(A) \) and \(\omega' \in \Omega_K(A') \).
(These ideles are certainly not unique. Indeed, if \(\omega \in \Omega_K(A) \), then \(\omega \in \Omega_K(B) \) whenever \(B \leq A \). Nevertheless, we may certainly fix/choose such ideles.)

For a given idele \(B \) consider the \(\mathbb{F}_q \)-linear and one-to-one maps \(\phi : L(A + B) \to \Omega_K(B^{-1}) \) and \(\phi' : L(A' + B) \to \Omega_K(B^{-1}) \).
Fix a non-zero $\omega \in \Omega_K$; we must show that $\Omega_K = \omega K$.

Towards that end, suppose $\omega' \in \Omega_K$. If $\omega' = 0$, then $\omega' = 0\omega$ and we’re done, so we will now assume $\omega' \neq 0$.

Since $\omega, \omega' \in \Omega_K$, there are ideles A and A' with $\omega \in \Omega_K(A)$ and $\omega' \in \Omega_K(A')$.

(These ideles are certainly not unique. Indeed, if $\omega \in \Omega_K(A)$, then $\omega \in \Omega_K(B)$ whenever $B \leq A$. Nevertheless, we may certainly fix/choose such ideles.)

For a given idele B consider the \mathbb{F}_q-linear and one-to-one maps $\phi : L(A + B) \to \Omega_K(B^{-1})$ and $\phi' : L(A' + B) \to \Omega_K(B^{-1})$ given by

$$\phi(\alpha) = \alpha \omega, \quad \phi'(\alpha) = \alpha \omega'.$$
(Prove that these maps are, indeed, \mathbb{F}_q-linear and one-to-one.)
(Prove that these maps are, indeed, \mathbb{F}_q-linear and one-to-one.)

We claim that one can choose B such that the images of ϕ and ϕ' have non-trivial intersection.
(Prove that these maps are, indeed, \mathbb{F}_q-linear and one-to-one.)

We claim that one can choose B such that the images of ϕ and ϕ' have non-trivial intersection. Note that, given this claim,
(Prove that these maps are, indeed, \mathbb{F}_q-linear and one-to-one.)

We claim that one can choose B such that the images of ϕ and ϕ' have non-trivial intersection. Note that, given this claim, we then have $\alpha, \alpha' \in K^\times$ with $\alpha \omega = \alpha' \omega'$,
(Prove that these maps are, indeed, \mathbb{F}_q-linear and one-to-one.)

We claim that one can choose B such that the images of ϕ and ϕ' have non-trivial intersection. Note that, given this claim, we then have $\alpha, \alpha' \in K^\times$ with $\alpha \omega = \alpha' \omega'$, so that $\omega' \in \omega K$.

Math 681, Monday, March 15

March 17, 2021
(Prove that these maps are, indeed, \mathbb{F}_q-linear and one-to-one.)
We claim that one can choose B such that the images of ϕ and ϕ' have non-trivial intersection. Note that, given this claim, we then have $\alpha, \alpha' \in K^\times$ with $\alpha \omega = \alpha' \omega'$, so that $\omega' \in \omega K$. In other words, the proof of Proposition 1 follows from this claim.
(Prove that these maps are, indeed, \mathbb{F}_q-linear and one-to-one.)

We claim that one can choose B such that the images of ϕ and ϕ' have non-trivial intersection. Note that, given this claim, we then have $\alpha, \alpha' \in K^\times$ with $\alpha \omega = \alpha' \omega'$, so that $\omega' \in \omega K$. In other words, the proof of Proposition 1 follows from this claim.

As for the claim, let z be the quantity in Riemann’s Theorem
(Prove that these maps are, indeed, \mathbb{F}_q-linear and one-to-one.)

We claim that one can choose B such that the images of ϕ and ϕ' have non-trivial intersection. Note that, given this claim, we then have $\alpha, \alpha' \in K^\times$ with $\alpha \omega = \alpha' \omega'$, so that $\omega' \in \omega K$. In other words, the proof of Proposition 1 follows from this claim.

As for the claim, let z be the quantity in Riemann’s Theorem and let B be such that

$$\deg(B) \geq \max\{z - \deg(A), \ z - \deg(A'), \ 1, \ 3(g - 1) - \deg(A) - \deg(A')\}.$$
(Prove that these maps are, indeed, \mathbb{F}_q-linear and one-to-one.)

We claim that one can choose B such that the images of ϕ and ϕ' have non-trivial intersection. Note that, given this claim, we then have $\alpha, \alpha' \in K^\times$ with $\alpha \omega = \alpha' \omega'$, so that $\omega' \in \omega K$. In other words, the proof of Proposition 1 follows from this claim.

As for the claim, let z be the quantity in Riemann's Theorem and let B be such that

$$\deg(B) \geq \max\{z - \deg(A), \ z - \deg(A'), \ 1, \ 3(g - 1) - \deg(A) - \deg(A')\}.$$

Then both $\deg(B + A), \ \deg(B + A') \geq z$,

(Prove that these maps are, indeed, \mathbb{F}_q-linear and one-to-one.)

We claim that one can choose B such that the images of ϕ and ϕ' have non-trivial intersection. Note that, given this claim, we then have $\alpha, \alpha' \in K^\times$ with $\alpha \omega = \alpha' \omega'$, so that $\omega' \in \omega K$. In other words, the proof of Proposition 1 follows from this claim.

As for the claim, let z be the quantity in Riemann's Theorem and let B be such that

$$\deg(B) \geq \max\{z - \deg(A), z - \deg(A'), 1, 3(g - 1) - \deg(A) - \deg(A')\}.$$

Then both $\deg(B + A), \deg(B + A') \geq z$, so by Riemann's Theorem
(Prove that these maps are, indeed, \mathbb{F}_q-linear and one-to-one.) We claim that one can choose B such that the images of ϕ and ϕ' have non-trivial intersection. Note that, given this claim, we then have $\alpha, \alpha' \in K^\times$ with $\alpha \omega = \alpha' \omega'$, so that $\omega' \in \omega K$. In other words, the proof of Proposition 1 follows from this claim.

As for the claim, let z be the quantity in Riemann’s Theorem and let B be such that

$$\deg(B) \geq \max\{z - \deg(A), \ z - \deg(A'), \ 1, \ 3(g - 1) - \deg(A) - \deg(A')\}.$$

Then both $\deg(B + A), \ \deg(B + A') \geq z$, so by Riemann’s Theorem

$$l(A + B) = \deg(A) + 1 - g + \deg(B),$$
(Prove that these maps are, indeed, \mathbb{F}_q-linear and one-to-one.)

We claim that one can choose B such that the images of ϕ and ϕ' have non-trivial intersection. Note that, given this claim, we then have $\alpha, \alpha' \in K^\times$ with $\alpha \omega = \alpha' \omega'$, so that $\omega' \in \omega K$. In other words, the proof of Proposition 1 follows from this claim.

As for the claim, let z be the quantity in Riemann’s Theorem and let B be such that

$$\deg(B) \geq \max\{z - \deg(A), \ z - \deg(A'), \ 1, \ 3(g - 1) - \deg(A) - \deg(A')\}.$$

Then both $\deg(B + A)$, $\deg(B + A') \geq z$, so by Riemann’s Theorem

$$l(A + B) = \deg(A) + 1 - g + \deg(B),$$
$$l(A' + B) = \deg(A') + 1 - g + \deg(B). \quad (5)$$
(Prove that these maps are, indeed, \(\mathbb{F}_q \)-linear and one-to-one.)

We claim that one can choose \(B \) such that the images of \(\phi \) and \(\phi' \) have non-trivial intersection. Note that, given this claim, we then have \(\alpha, \alpha' \in K^\times \) with \(\alpha \omega = \alpha' \omega' \), so that \(\omega' \in \omega K \). In other words, the proof of Proposition 1 follows from this claim.

As for the claim, let \(z \) be the quantity in Riemann’s Theorem and let \(B \) be such that

\[
\deg(B) \geq \max\{z - \deg(A), \ z - \deg(A'), \ 1, \ 3(g - 1) - \deg(A) - \deg(A')\}.
\]

Then both \(\deg(B + A) \), \(\deg(B + A') \) \(\geq z \), so by Riemann’s Theorem

\[
\begin{align*}
\l(A + B) &= \deg(A) + 1 - g + \deg(B), \\
\l(A' + B) &= \deg(A') + 1 - g + \deg(B).
\end{align*}
\]

On the other hand, by Theorem 1 and (4),
(Prove that these maps are, indeed, \mathbb{F}_q-linear and one-to-one.)

We claim that one can choose B such that the images of ϕ and ϕ' have non-trivial intersection. Note that, given this claim, we then have $\alpha, \alpha' \in K^\times$ with $\alpha \omega = \alpha' \omega'$, so that $\omega' \in \omega K$. In other words, the proof of Proposition 1 follows from this claim.

As for the claim, let z be the quantity in Riemann’s Theorem and let B be such that

$$\deg(B) \geq \max\{z - \deg(A), \ z - \deg(A'), \ 1, \ 3(g - 1) - \deg(A) - \deg(A')\}.$$

Then both $\deg(B + A), \ \deg(B + A') \geq z$, so by Riemann’s Theorem

$$l(A + B) = \deg(A) + 1 - g + \deg(B),$$

$$l(A' + B) = \deg(A') + 1 - g + \deg(B). \quad (5)$$

On the other hand, by Theorem 1 and (4), $\Omega_K(B^{-1})$ has dimension
(Prove that these maps are, indeed, \(\mathbb{F}_q \)-linear and one-to-one.)

We claim that one can choose \(B \) such that the images of \(\phi \) and \(\phi' \) have non-trivial intersection. Note that, given this claim, we then have \(\alpha, \alpha' \in K^\times \) with \(\alpha \omega = \alpha' \omega' \), so that \(\omega' \in \omega K \). In other words, the proof of Proposition 1 follows from this claim.

As for the claim, let \(z \) be the quantity in Riemann’s Theorem and let \(B \) be such that

\[
\deg(B) \geq \max\{z - \deg(A), \, z - \deg(A'), \, 1, \, 3(g - 1) - \deg(A) - \deg(A')\}.
\]

Then both \(\deg(B + A), \, \deg(B + A') \geq z \), so by Riemann’s Theorem

\[
\begin{align*}
 l(A + B) &= \deg(A) + 1 - g + \deg(B), \\
 l(A' + B) &= \deg(A') + 1 - g + \deg(B).
\end{align*}
\]

On the other hand, by Theorem 1 and (4), \(\Omega_K(B^{-1}) \) has dimension

\[
\dim_{\mathbb{F}_q} (\Omega_K(B^{-1})) = l(-B) - \deg(-B) - 1 + g = \deg(B) - 1 + g
\]
(Prove that these maps are, indeed, \mathbb{F}_q-linear and one-to-one.)

We claim that one can choose B such that the images of ϕ and ϕ' have non-trivial intersection. Note that, given this claim, we then have $\alpha, \alpha' \in K^\times$ with $\alpha \omega = \alpha' \omega'$, so that $\omega' \in \omega K$. In other words, the proof of Proposition 1 follows from this claim.

As for the claim, let z be the quantity in Riemann's Theorem and let B be such that

$$\deg(B) \geq \max\{z - \deg(A), z - \deg(A'), 1, 3(g - 1) - \deg(A) - \deg(A')\}.$$

Then both $\deg(B + A), \deg(B + A') \geq z$, so by Riemann's Theorem

$$l(A + B) = \deg(A) + 1 - g + \deg(B),$$
$$l(A' + B) = \deg(A') + 1 - g + \deg(B).$$

On the other hand, by Theorem 1 and (4), $\Omega_K(B^{-1})$ has dimension

$$\dim_{\mathbb{F}_q}(\Omega_K(B^{-1})) = l(-B) - \deg(-B) - 1 + g = \deg(B) - 1 + g$$

since $\deg(-B) = -\deg(B) \leq -1$.

Math 681, Monday, March 15

March 17, 2021
Now (5) tells us the dimensions
Now (5) tells us the dimensions (as \mathbb{F}_q-vector spaces)
Now (5) tells us the dimensions (as \mathbb{F}_q-vector spaces) of the respective images of ϕ and ϕ',
Now (5) tells us the dimensions (as \mathbb{F}_q-vector spaces) of the respective images of ϕ and ϕ', which when added are larger than the dimension of the codomain $\Omega_K(B^{-1})$ by (6) and construction.
Now (5) tells us the dimensions (as \mathbb{F}_q-vector spaces) of the respective images of ϕ and ϕ', which when added are larger than the dimension of the codomain $\Omega_K(B^{-1})$ by (6) and construction.

This proves that these images have non-trivial intersection.
Now (5) tells us the dimensions (as \mathbb{F}_q-vector spaces) of the respective images of ϕ and ϕ', which when added are larger than the dimension of the codomain $\Omega_K(B^{-1})$ by (6) and construction.

This proves that these images have non-trivial intersection. That proves our claim, and whence Proposition 1.