We ended Monday part of the way through our “sketch” of a proof for the following.

Theorem (1)

Via the diagonal embedding as before, the field K is a discrete subset of the adele ring K_A and the quotient K_A/K is compact.

We considered the case $K = \mathbb{Q}$ on Monday.

We’ll start today with the case $K = \mathbb{F}_p(\mathbb{X})$.

Math 681, Wednesday, March 3 and Friday, March 5
The Adele Ring (cont.)

We ended Monday part of the way through our “sketch” of a proof for the following.
We ended Monday part of the way through our “sketch” of a proof for the following.

Theorem (1)

Via the diagonal embedding as before, the field K is a discrete subset of the adele ring K_A and the quotient K_A/K is compact. We considered the case $K = \mathbb{Q}$ on Monday. We'll start today with the case $K = \mathbb{F}_p(\mathbb{X})$.
We ended Monday part of the way through our “sketch” of a proof for the following.

Theorem (1)

Via the diagonal embedding as before,
We ended Monday part of the way through our “sketch” of a proof for the following.

Theorem (1)

Via the diagonal embedding as before, the field K is a discrete subset of the adele ring $K_{\mathbb{A}}$ and the quotient $K_{\mathbb{A}}/K$ is compact.
We ended Monday part of the way through our “sketch” of a proof for the following.

Theorem (1)

Via the diagonal embedding as before, the field K is a discrete subset of the adele ring $K\mathbb{A}$ and the quotient $K\mathbb{A}/K$ is compact.

We considered the case $K = \mathbb{Q}$ on Monday.
We ended Monday part of the way through our “sketch” of a proof for the following.

Theorem (1)

Via the diagonal embedding as before, the field K is a discrete subset of the adele ring $K_{\mathbb{A}}$ and the quotient $K_{\mathbb{A}}/K$ is compact.

We considered the case $K = \mathbb{Q}$ on Monday. We’ll start today with the case $K = \mathbb{F}_p(X)$.
Similar to how we proceeded in the case $K = \mathbb{Q}$,
Similar to how we proceeded in the case $K = \mathbb{Q}$, for every place $v \in M(K)$ set $K^{(v)}$ to be the subset of $\alpha \in K$ where
Similar to how we proceeded in the case $K = \mathbb{Q}$, for every place $v \in M(K)$ set $K^{(v)}$ to be the subset of $\alpha \in K$ where $|\alpha|_w \leq 1$ for all places $w \neq v$.
Similar to how we proceeded in the case $K = \mathbb{Q}$, for every place $v \in M(K)$ set $K^{(v)}$ to be the subset of $\alpha \in K$ where $|\alpha|_w \leq 1$ for all places $w \neq v$. We then have

$$K_v = K^{(v)} + \mathcal{O}_v, \quad K^{(v)} \cap \mathcal{O}_v = \mathbb{F}_p.$$ \hfill (1)
Similar to how we proceeded in the case $K = \mathbb{Q}$, for every place $v \in M(K)$ set $K^{(v)}$ to be the subset of $\alpha \in K$ where $|\alpha|_w \leq 1$ for all places $w \neq v$. We then have

$$K_v = K^{(v)} + \mathcal{O}_v, \quad K^{(v)} \cap \mathcal{O}_v = \mathbb{F}_p.$$

(1)

The reasoning is the same as before.
Similar to how we proceeded in the case $K = \mathbb{Q}$, for every place $v \in M(K)$ set $K^{(v)}$ to be the subset of $\alpha \in K$ where $|\alpha|_w \leq 1$ for all places $w \neq v$. We then have

$$K_v = K^{(v)} + \mathcal{O}_v, \quad K^{(v)} \cap \mathcal{O}_v = \mathbb{F}_p. \tag{1}$$

The reasoning is the same as before. Any $\alpha \in K_v$ can be viewed as the limit of some Cauchy sequence in K:
Similar to how we proceeded in the case $K = \mathbb{Q}$, for every place $v \in M(K)$ set $K^{(v)}$ to be the subset of $\alpha \in K$ where $|\alpha|_w \leq 1$ for all places $w \neq v$.

We then have

$$K_v = K^{(v)} + \mathcal{O}_v, \quad K^{(v)} \cap \mathcal{O}_v = \mathbb{F}_p. \quad (1)$$

The reasoning is the same as before. Any $\alpha \in K_v$ can be viewed as the limit of some Cauchy sequence in K: $\alpha = \lim_{n \to \infty} a_n$.

Math 681, Wednesday, March 3 and Friday, March 5
Similar to how we proceeded in the case $K = \mathbb{Q}$, for every place $v \in M(K)$ set $K^{(v)}$ to be the subset of $\alpha \in K$ where $|\alpha|_w \leq 1$ for all places $w \neq v$. We then have

$$K_v = K^{(v)} + \mathcal{O}_v, \quad K^{(v)} \cap \mathcal{O}_v = \mathbb{F}_p.$$ \hfill (1)

The reasoning is the same as before. Any $\alpha \in K_v$ can be viewed as the limit of some Cauchy sequence in K: $\alpha = \lim_{n \to \infty} a_n$. There is an n_0 such that $|\alpha - a_{n_0}|_v \leq 1$,.
Similar to how we proceeded in the case $K = \mathbb{Q}$, for every place $v \in M(K)$ set $K^{(v)}$ to be the subset of $\alpha \in K$ where $|\alpha|_w \leq 1$ for all places $w \neq v$. We then have

$$K_v = K^{(v)} + \mathcal{O}_v, \quad K^{(v)} \cap \mathcal{O}_v = \mathbb{F}_p. \quad (1)$$

The reasoning is the same as before. Any $\alpha \in K_v$ can be viewed as the limit of some Cauchy sequence in K: $\alpha = \lim_{n \to \infty} a_n$. There is an n_0 such that $|\alpha - a_{n_0}|_v \leq 1$, whence $\alpha - a_{n_0} \in \mathcal{O}_v$.

Math 681, Wednesday, March 3 and Friday, March 5
Similar to how we proceeded in the case $K = \mathbb{Q}$, for every place $v \in M(K)$ set $K^{(v)}$ to be the subset of $\alpha \in K$ where $|\alpha|_w \leq 1$ for all places $w \neq v$. We then have

\[K_v = K^{(v)} + \mathcal{O}_v, \quad K^{(v)} \cap \mathcal{O}_v = \mathbb{F}_p. \tag{1} \]

The reasoning is the same as before. Any $\alpha \in K_v$ can be viewed as the limit of some Cauchy sequence in K: $\alpha = \lim_{n \to \infty} a_n$. There is an n_0 such that $|\alpha - a_{n_0}|_v \leq 1$, whence $\alpha - a_{n_0} \in \mathcal{O}_v$. It’s fairly easy to see that any $a \in K$ may be written as a sum $b + \beta$ where $b \in K^{(v)}$ and $\beta \in \mathcal{O}_v$.

Similar to how we proceeded in the case $K = \mathbb{Q}$, for every place $v \in M(K)$ set $K^{(v)}$ to be the subset of $\alpha \in K$ where $|\alpha|_w \leq 1$ for all places $w \neq v$. We then have

$$K_v = K^{(v)} + \mathcal{O}_v, \quad K^{(v)} \cap \mathcal{O}_v = \mathbb{F}_p. \quad (1)$$

The reasoning is the same as before. Any $\alpha \in K_v$ can be viewed as the limit of some Cauchy sequence in K: $\alpha = \lim_{n \to \infty} a_n$. There is an n_0 such that $|\alpha - a_{n_0}|_v \leq 1$, whence $\alpha - a_{n_0} \in \mathcal{O}_v$. It’s fairly easy to see that any $a \in K$ may be written as a sum $b + \beta$ where $b \in K^{(v)}$ and $\beta \in \mathcal{O}_v$.

Any $\alpha \in K^{(v)} \cap \mathcal{O}_v$ satisfies $|\alpha|_w \leq 1$ for all places $w \in M(K)$.
Similar to how we proceeded in the case $K = \mathbb{Q}$, for every place $v \in M(K)$ set $K^{(v)}$ to be the subset of $\alpha \in K$ where $|\alpha|_w \leq 1$ for all places $w \neq v$. We then have

$$K_v = K^{(v)} + \mathcal{O}_v, \quad K^{(v)} \cap \mathcal{O}_v = \mathbb{F}_p. \quad (1)$$

The reasoning is the same as before. Any $\alpha \in K_v$ can be viewed as the limit of some Cauchy sequence in K: $\alpha = \lim_{n \to \infty} a_n$. There is an n_0 such that $|\alpha - a_{n_0}|_v \leq 1$, whence $\alpha - a_{n_0} \in \mathcal{O}_v$. It’s fairly easy to see that any $a \in K$ may be written as a sum $b + \beta$ where $b \in K^{(v)}$ and $\beta \in \mathcal{O}_v$.

Any $\alpha \in K^{(v)} \cap \mathcal{O}_v$ satisfies $|\alpha|_w \leq 1$ for all places $w \in M(K)$. We’ve already seen that the only such α are elements of \mathbb{F}_p here.
Using (1),

$$K_A = K_A(\emptyset) + K_A,$$

$$K_A(\emptyset) \cap K_A = F_p,$$

where we have identified $$F_p \subset K \subset K_A$$ via the diagonal embedding above.

To see why, let $$(\alpha_v)_v \in K_A$$ where $${\alpha_v} \in K_v$$ for all $$v \in M(K)$$ and $${\alpha_v} \in O_v$$ for all but finitely many $$v$$.

Just as in the case $$K = Q$$ before, (2) suffices to prove the Theorem in the case $$K = F_p(X)$$.
Using (1), we claim that

\[K_\mathbb{A} = K_\mathbb{A}(\emptyset) + K, \quad K_\mathbb{A}(\emptyset) \cap K = \mathbb{F}_p, \]

(2)
Using (1), we claim that

\[K_A = K_A(\emptyset) + K, \quad K_A(\emptyset) \cap K = \mathbb{F}_p, \]

(2)

where we have identified \(\mathbb{F}_p \subset K \subset K_A \) via the diagonal embedding above.
Using (1), we claim that

\[K_{\mathbb{A}} = K_{\mathbb{A}}(\emptyset) + K, \quad K_{\mathbb{A}}(\emptyset) \cap K = \mathbb{F}_p, \quad (2) \]

where we have identified $\mathbb{F}_p \subset K \subset K_{\mathbb{A}}$ via the diagonal embedding above. To see why, let \((\alpha_v)_v \in K_{\mathbb{A}}\) where $\alpha_v \in K_v$ for all $v \in M(K)$. Just as in the case $K = \mathbb{Q}$ before, (2) suffices to prove the Theorem in the case $K = \mathbb{F}_p(X)$. \[\]

Math 681, Wednesday, March 3 and Friday, March 5
Using (1), we claim that

\[K_A = K_A(\emptyset) + K, \quad K_A(\emptyset) \cap K = \mathbb{F}_p, \] (2)

where we have identified \(\mathbb{F}_p \subset K \subset K_A \) via the diagonal embedding above. To see why, let \((\alpha_v)_v \in K_A\) where \(\alpha_v \in K_v\) for all \(v \in M(K)\) and \(\alpha_v \in \mathcal{O}_v\) for all but finitely many \(v\).
Using (1), we claim that

$$K_\Delta = K_\Delta(\emptyset) + K, \quad K_\Delta(\emptyset) \cap K = \mathbb{F}_p,$$

where we have identified $\mathbb{F}_p \subset K \subset K_\Delta$ via the diagonal embedding above.

To see why, let $(\alpha_v)_v \in K_\Delta$ where $\alpha_v \in K_v$ for all $v \in M(K)$ and $\alpha_v \in \mathcal{O}_v$ for all but finitely many v.

Just as in the case $K = \mathbb{Q}$ before,
Using (1), we claim that

\[K_{\mathbb{A}} = K_{\mathbb{A}}(\emptyset) + K, \quad K_{\mathbb{A}}(\emptyset) \cap K = \mathbb{F}_p, \tag{2} \]

where we have identified \(\mathbb{F}_p \subset K \subset K_{\mathbb{A}} \) via the diagonal embedding above.

To see why, let \((\alpha_v)_v \in K_{\mathbb{A}} \) where \(\alpha_v \in K_v \) for all \(v \in M(K) \) and \(\alpha_v \in \mathcal{O}_v \) for all but finitely many \(v \).

Just as in the case \(K = \mathbb{Q} \) before, (2) suffices to prove the Theorem in the case \(K = \mathbb{F}_p(X) \).
The idele group is the group \(K \times A \), the (multiplicatively) invertible elements of the adele ring.

Lemma (5)
The idele group consists of those adeles \((\alpha_v)_v \in M(K)\) where \(\alpha_v \neq 0\) for all places and \(|\alpha_v|_v = 1\) for all but finitely many places.

In particular, \(K^\times\) (the non-zero elements of the field \(K\)) is a subgroup of the idele group via the diagonal embedding.

Proof:
Let \((\alpha_v)_v \in K \times A\). Then by definition there is a \((\beta_v)_v \in K^A\) such that \((\alpha_v) \cdot (\beta_v) = 1\).

In particular, \(\alpha_v \beta_v = 1\) for all places \(v\), so that \(\alpha_v \neq 0\).

Further, \(|\beta_v|_v \leq 1\) for all but finitely many places \(v\) and the same goes for \(\alpha_v\).

Therefore \(|\alpha_v|_v = 1 = |\beta_v|_v\) for all but finitely many places \(v \in M(K)\).
Definition

The *idele group* is the group K_A^\times, where K_A^\times consists of those adeles $(\alpha_v)_{v \in \mathcal{M}(K)}$ such that $\alpha_v \neq 0$ for all places and $|\alpha_v|_v = 1$ for all but finitely many places. In particular, K^\times (the non-zero elements of the field K) is a subgroup of the idele group via the diagonal embedding.

Proof:

Let $(\alpha_v) \in K_A^\times$. Then by definition there is a $(\beta_v) \in K_A$ such that $(\alpha_v) \cdot (\beta_v) = 1$. In particular, $\alpha_v \beta_v = 1$ for all places v, so that $\alpha_v \neq 0$. Further, $|\beta_v|_v \leq 1$ for all but finitely many places v and the same goes for α_v. Therefore $|\alpha_v|_v = 1 = |\beta_v|_v$ for all but finitely many places $v \in \mathcal{M}(K)$.
Definition

The *idele group* is the group K_A^\times, the (multiplicatively) invertible elements of the adele ring.
Definition

The *idele group* is the group \mathbb{K}_A^\times, the (multiplicatively) invertible elements of the adele ring.

Lemma (5)

The idele group consists of those adeles $(\alpha_v)_{v \in M(\mathbb{K})}$ where $\alpha_v \neq 0$ for all places and $|\alpha_v|_v = 1$ for all but finitely many places. In particular, \mathbb{K}^\times (the non-zero elements of the field \mathbb{K}) is a subgroup of the idele group via the diagonal embedding.

Proof:

Let $(\alpha_v) \in \mathbb{K}_A^\times$. Then by definition there is a $(\beta_v) \in \mathbb{K}_A$ such that $(\alpha_v) \cdot (\beta_v) = 1$. In particular, $\alpha_v \beta_v = 1$ for all places v, so that $\alpha_v \neq 0$. Further, $|\beta_v|_v \leq 1$ for all but finitely many places v and the same goes for α_v. Therefore $|\alpha_v|_v = 1 = |\beta_v|_v$ for all but finitely many places $v \in M(\mathbb{K})$.
Definition

The *idele group* is the group K^\times_A, the (multiplicatively) invertible elements of the adele ring.

Lemma (5)

The idele group consists of those adeles $(\alpha_v)_{v \in M(K)}$ where $\alpha_v \neq 0$ for all places.

Proof:

Let $(\alpha_v) \in K^\times_A$. Then by definition there is a $(\beta_v) \in K_A$ such that $(\alpha_v) \cdot (\beta_v) = 1$. In particular, $\alpha_v \beta_v = 1$ for all places v, so that $\alpha_v \neq 0$.

Further, $|\beta_v|_v \leq 1$ for all but finitely many places v and the same goes for α_v.

Therefore $|\alpha_v|_v = 1 = |\beta_v|_v$ for all but finitely many places $v \in M(K)$.
Definition

The idele group is the group K_A^\times, the (multiplicatively) invertible elements of the adele ring.

Lemma (5)

The idele group consists of those adeles $(\alpha_v)_{v \in \mathcal{M}(K)}$ where $\alpha_v \neq 0$ for all places and $|\alpha_v|_v = 1$ for all but finitely many places.
Definition

The *idele group* is the group K_A^\times, the (multiplicatively) invertible elements of the adele ring.

Lemma (5)

The idele group consists of those adeles $(\alpha_v)_{v \in M(K)}$ where $\alpha_v \neq 0$ for all places and $|\alpha_v|_v = 1$ for all but finitely many places. In particular, K^\times
Definition

The **idele group** is the group K_A^\times, the (multiplicatively) invertible elements of the adele ring.

Lemma (5)

The idele group consists of those adeles $(\alpha_v)_{v \in M(K)}$ where $\alpha_v \neq 0$ for all places and $|\alpha_v|_v = 1$ for all but finitely many places. In particular, K^\times (the non-zero elements of the field K)
Definition

The *idele group* is the group K_A^\times, the (multiplicatively) invertible elements of the adele ring.

Lemma (5)

The idele group consists of those adeles $(\alpha_v)_{v \in M(K)}$ where $\alpha_v \neq 0$ for all places and $|\alpha_v|_v = 1$ for all but finitely many places. In particular, K_A^\times (the non-zero elements of the field K) is a subgroup of the idele group via the diagonal embedding.
Definition

The *idele group* is the group K_A^\times, the (multiplicatively) invertible elements of the adele ring.

Lemma (5)

The idele group consists of those adeles $(\alpha_v)_{v \in M(K)}$ where $\alpha_v \neq 0$ for all places and $|\alpha_v|_v = 1$ for all but finitely many places. In particular, K^\times (the non-zero elements of the field K) is a subgroup of the idele group via the diagonal embedding.

Proof:
Definition

The *idele group* is the group $K^\times_\mathbb{A}$, the (multiplicatively) invertible elements of the adele ring.

Lemma (5)

The idele group consists of those adeles $(\alpha_v)_{v \in M(K)}$ where $\alpha_v \neq 0$ for all places and $|\alpha_v|_v = 1$ for all but finitely many places. In particular, K^\times (the non-zero elements of the field K) is a subgroup of the idele group via the diagonal embedding.

Proof: Let $(\alpha_v) \in K^\times_\mathbb{A}$.
Definition

The *idele group* is the group K_A^\times, the (multiplicatively) invertible elements of the adele ring.

Lemma (5)

The idele group consists of those adeles $(\alpha_v)_{v \in M(K)}$ *where* $\alpha_v \neq 0$ *for all places and* $|\alpha_v|_v = 1$ *for all but finitely many places. In particular,* K_A^\times *(the non-zero elements of the field* K*) is a subgroup of the idele group via the diagonal embedding.)*

Proof: Let $(\alpha_v) \in K_A^\times$. Then by definition there is a $(\beta_v) \in K_A$ such that $(\alpha_v) \cdot (\beta_v) = 1$.
Definition

The *idele group* is the group $K^\times_\mathbb{A}$, the (multiplicatively) invertible elements of the adele ring.

Lemma (5)

The idele group consists of those adeles $(\alpha_v)_{v \in M(K)}$ where $\alpha_v \neq 0$ for all places and $|\alpha_v|_v = 1$ for all but finitely many places. In particular, K^\times (the non-zero elements of the field K) is a subgroup of the idele group via the diagonal embedding.

Proof: Let $(\alpha_v) \in K^\times_\mathbb{A}$. Then by definition there is a $(\beta_v) \in K_\mathbb{A}$ such that $(\alpha_v) \cdot (\beta_v) = 1$. In particular, $\alpha_v \beta_v = 1$ for all places v,

Math 681, Wednesday, March 3 and Friday, March 5
Definition

The *idele group* is the group $K^{\times}_{\mathbb{A}}$, the (multiplicatively) invertible elements of the adele ring.

Lemma (5)

The idele group consists of those adeles $(\alpha_v)_{v \in \mathcal{M}(K)}$ where $\alpha_v \neq 0$ for all places and $|\alpha_v|_v = 1$ for all but finitely many places. In particular, K^{\times} (the non-zero elements of the field K) is a subgroup of the idele group via the diagonal embedding.

Proof: Let $(\alpha_v) \in K^{\times}_{\mathbb{A}}$. Then by definition there is a $(\beta_v) \in K_{\mathbb{A}}$ such that $(\alpha_v) \cdot (\beta_v) = 1$. In particular, $\alpha_v \beta_v = 1$ for all places v, so that $\alpha_v \neq 0$.

Math 681, Wednesday, March 3 and Friday, March 5
Definition

The **idele group** is the group \(\mathbb{A}_K^\times \), the (multiplicatively) invertible elements of the adele ring.

Lemma (5)

The idele group consists of those adeles \((\alpha_v)_{v \in \mathcal{M}(K)} \) where \(\alpha_v \neq 0 \) for all places and \(|\alpha_v|_v = 1 \) for all but finitely many places. In particular, \(\mathbb{K}^\times \) (the non-zero elements of the field \(K \)) is a subgroup of the idele group via the diagonal embedding.

Proof: Let \((\alpha_v) \in \mathbb{A}_K^\times \). Then by definition there is a \((\beta_v) \in \mathbb{A}_K \) such that \((\alpha_v) \cdot (\beta_v) = 1 \). In particular, \(\alpha_v \beta_v = 1 \) for all places \(v \), so that \(\alpha_v \neq 0 \). Further, \(|\beta_v|_v \leq 1 \) for all but finitely many places \(v \).
Definition

The **idele group** is the group K_A^\times, the (multiplicatively) invertible elements of the adele ring.

Lemma (5)

The idele group consists of those adeles $(\alpha_v)_{v \in \mathcal{M}(K)}$ where $\alpha_v \neq 0$ for all places and $|\alpha_v|_v = 1$ for all but finitely many places. In particular, K^\times (the non-zero elements of the field K) is a subgroup of the idele group via the diagonal embedding.

Proof: Let $(\alpha_v) \in K_A^\times$. Then by definition there is a $(\beta_v) \in K_A$ such that $(\alpha_v) \cdot (\beta_v) = 1$. In particular, $\alpha_v \beta_v = 1$ for all places v, so that $\alpha_v \neq 0$. Further, $|\beta_v|_v \leq 1$ for all but finitely many places v and the same goes for α_v.
Definition

The *idele group* is the group K_A^\times, the (multiplicatively) invertible elements of the adele ring.

Lemma (5)

The idele group consists of those adeles $(\alpha_v)_{v\in M(K)}$ where $\alpha_v \neq 0$ for all places and $|\alpha_v|_v = 1$ for all but finitely many places. In particular, K^\times (the non-zero elements of the field K) is a subgroup of the idele group via the diagonal embedding.

Proof: Let $(\alpha_v) \in K_A^\times$. Then by definition there is a $(\beta_v) \in K_A$ such that $(\alpha_v) \cdot (\beta_v) = 1$. In particular, $\alpha_v \beta_v = 1$ for all places v, so that $\alpha_v \neq 0$. Further, $|\beta_v|_v \leq 1$ for all but finitely many places v and the same goes for α_v. Therefore $|\alpha_v|_v = 1 = |\beta_v|_v$ for all but finitely many places $v \in M(K)$.
Recall the definitions of ramification index and residue class degree for number fields. In the language of places/valuation rings, the residue class degree of a non-archimedean place \(v \in M(\mathbb{K}) \) is the degree of the extension \(O_P/M_P \) over \(O_p/M_p \equiv \mathbb{Z}/p\mathbb{Z} \), where \(p \in M(\mathbb{Q}) \) is the prime/place lying below \(v \).

The ramification index may be viewed as the positive integer \(e \) where \(\text{ord}_v(a) = e \text{ord}_p(a) \) for all non-zero \(a \in \mathbb{Q} \subseteq \mathbb{K} \).

We thus see that both the residue class degree and ramification index of a place of a function field can be given in the exact same well-defined manner; just use \(\mathbb{F}_p(X) \) in place of \(\mathbb{Q} \).

It's handy to define the ramification index of any archimedean place to be 1 and the residue class degree to be 1 if it corresponds to a real embedding, and 2 if it corresponds to a pair of complex conjugate embeddings.
Recall the definitions of *ramification index* and *residue class degree* for number fields.

In the language of places/valuation rings, the residue class degree of a non-archimedean place \(v \in M(K) \) is the degree of the extension \(\mathcal{O}_P/M_P \cong \mathbb{Z}/p\mathbb{Z} \), where \(p \in M(\mathbb{Q}) \) is the prime/place lying below \(v \).

The ramification index may be viewed as the positive integer \(e \) where \(\text{ord}_v(a) = e \text{ord}_p(a) \) for all non-zero \(a \in \mathbb{Q} \subseteq K \).

We thus see that both the residue class degree and ramification index of a place of a function field can be given in the exact same well-defined manner; just use \(F_p(X) \) in place of \(\mathbb{Q} \).

It's handy to define the ramification index of any archimedean place to be 1 and the residue class degree to be 1 if it corresponds to a real embedding, and 2 if it corresponds to a pair of complex conjugate embeddings.
Recall the definitions of *ramification index* and *residue class degree* for number fields.

In the language of places/valuation rings,

The ramification index may be viewed as the positive integer e where $\text{ord}_v(a) = e \text{ord}_p(a)$ for all non-zero $a \in \mathbb{Q} \subseteq K$.

We thus see that both the residue class degree and ramification index of a place of a function field can be given in the exact same well-defined manner; just use $\mathbb{F}_p(X)$ in place of \mathbb{Q}.

It's handy to define the ramification index of any archimedean place to be 1 and the residue class degree to be 1 if it corresponds to a real embedding, and 2 if it corresponds to a pair of complex conjugate embeddings.
Recall the definitions of *ramification index* and *residue class degree* for number fields.
In the language of places/valuation rings, the residue class degree of a non-archimedean place $v \in M(K)$ is the degree of the extension $O_{\mathbb{P}}/M_{\mathbb{P}} \cong \mathbb{Z}/p\mathbb{Z}$, where $p \in M(\mathbb{Q})$ is the prime/place lying below v.

The ramification index may be viewed as the positive integer e where $\text{ord}_v(a) = e \text{ord}_p(a)$ for all non-zero $a \in \mathbb{Q} \subseteq K$.

We thus see that both the residue class degree and ramification index of a place of a function field can be given in the exact same well-defined manner; just use $F_p(X)$ in place of \mathbb{Q}.

It's handy to define the ramification index of any archimedean place to be 1 and the residue class degree to be 1 if it corresponds to a real embedding, and 2 if it corresponds to a pair of complex conjugate embeddings.
Recall the definitions of *ramification index* and *residue class degree* for number fields.

In the language of places/valuation rings, the residue class degree of a non-archimedean place $v \in M(K)$ is the degree of the extension $\mathcal{O}_v/\mathfrak{m}_v$ over $\mathcal{O}_p/\mathfrak{m}_p \cong \mathbb{Z}/p\mathbb{Z}$.
Recall the definitions of *ramification index* and *residue class degree* for number fields. In the language of places/valuation rings, the residue class degree of a non-archimedean place $\nu \in M(K)$ is the degree of the extension $\mathcal{O}_\mathcal{P}/M_\mathcal{P}$ over $\mathcal{O}_p/M_p \cong \mathbb{Z}/p\mathbb{Z}$, where $p \in M(\mathbb{Q})$ is the prime/place lying below ν. The ramification index may be viewed as the positive integer e where $\text{ord}_\nu(a) = e \text{ord}_p(a)$ for all non-zero $a \in \mathbb{Q} \subseteq K$. We thus see that both the residue class degree and ramification index of a place of a function field can be given in the exact same well-defined manner; just use $F_p(X)$ in place of \mathbb{Q}. It’s handy to define the ramification index of any archimedean place to be 1 and the residue class degree to be 1 if it corresponds to a real embedding, and 2 if it corresponds to a pair of complex conjugate embeddings.
Recall the definitions of *ramification index* and *residue class degree* for number fields.

In the language of places/valuation rings, the residue class degree of a non-archimedean place $v \in M(K)$ is the degree of the extension \mathcal{O}_v/M_v over $\mathcal{O}_p/M_p \cong \mathbb{Z}/p\mathbb{Z}$, where $p \in M(\mathbb{Q})$ is the prime/place lying below v. The ramification index may be viewed as the positive integer e where $\text{ord}_v(a) = e \text{ord}_p(a)$ for all non-zero $a \in \mathbb{Q} \subseteq K$.

Math 681, Wednesday, March 3 and Friday, March 5
The Artin-Whaples Product Formula

Recall the definitions of \textit{ramification index} and \textit{residue class degree} for number fields.

In the language of places/valuation rings, the residue class degree of a non-archimedean place $v \in M(K)$ is the degree of the extension \mathcal{O}_v/M_v over $\mathcal{O}_p/M_p \cong \mathbb{Z}/p\mathbb{Z}$, where $p \in M(\mathbb{Q})$ is the prime/place lying below v. The ramification index may be viewed as the positive integer e where $\text{ord}_v(a) = e \text{ord}_p(a)$ for all non-zero $a \in \mathbb{Q} \subseteq K$.

We thus see that both the residue class degree and ramification index of a place of a function field can be given in the exact same well-defined manner;
Recall the definitions of \textit{ramification index} and \textit{residue class degree} for number fields.

In the language of places/valuation rings, the residue class degree of a non-archimedean place $\nu \in M(K)$ is the degree of the extension $\mathcal{O}_\nu / \mathcal{M}_\nu$ over $\mathcal{O}_p / \mathcal{M}_p \cong \mathbb{Z} / p\mathbb{Z}$, where $p \in M(\mathbb{Q})$ is the prime/place lying below ν. The ramification index may be viewed as the positive integer e where $\text{ord}_\nu(a) = e \text{ord}_p(a)$ for all non-zero $a \in \mathbb{Q} \subseteq K$.

We thus see that both the residue class degree and ramification index of a place of a function field can be given in the exact same well-defined manner; just use $\mathbb{F}_p(X)$ in place of \mathbb{Q}.
Recall the definitions of *ramification index* and *residue class degree* for number fields.

In the language of places/valuation rings, the residue class degree of a non-archimedean place $v \in M(K)$ is the degree of the extension $\mathcal{O}_v/\mathcal{M}_v$ over $\mathcal{O}_p/\mathcal{M}_p \cong \mathbb{Z}/p\mathbb{Z}$, where $p \in M(\mathbb{Q})$ is the prime/place lying below v. The ramification index may be viewed as the positive integer e where $\text{ord}_v(a) = e \text{ord}_p(a)$ for all non-zero $a \in \mathbb{Q} \subseteq K$.

We thus see that both the residue class degree and ramification index of a place of a function field can be given in the exact same well-defined manner; just use $\mathbb{F}_p(X)$ in place of \mathbb{Q}.

It’s handy to define the ramification index of any archimedean place to be 1.
Recall the definitions of \textit{ramification index} and \textit{residue class degree} for number fields. In the language of places/valuation rings, the residue class degree of a non-archimedean place \(v \in M(K) \) is the degree of the extension \(\mathcal{O}_v/M_v \) over \(\mathcal{O}_p/M_p \cong \mathbb{Z}/p\mathbb{Z} \), where \(p \in M(\mathbb{Q}) \) is the prime/place lying below \(v \). The ramification index may be viewed as the positive integer \(e \) where \(\text{ord}_v(a) = e \text{ord}_p(a) \) for all non-zero \(a \in \mathbb{Q} \subseteq K \).

We thus see that both the residue class degree and ramification index of a place of a function field can be given in the exact same well-defined manner; just use \(\mathbb{F}_p(X) \) in place of \(\mathbb{Q} \).

It’s handy to define the ramification index of any archimedean place to be 1 and the residue class degree to be 1 if it corresponds to a real embedding,
Recall the definitions of *ramification index* and *residue class degree* for number fields.

In the language of places/valuation rings, the residue class degree of a non-archimedean place \(v \in M(K) \) is the degree of the extension \(\mathfrak{O}_v/\mathfrak{M}_v \) over \(\mathfrak{O}_p/\mathfrak{M}_p \cong \mathbb{Z}/p\mathbb{Z} \), where \(p \in M(\mathbb{Q}) \) is the prime/place lying below \(v \).

The ramification index may be viewed as the positive integer \(e \) where \(\text{ord}_v(a) = e \text{ord}_p(a) \) for all non-zero \(a \in \mathbb{Q} \subseteq K \).

We thus see that both the residue class degree and ramification index of a place of a function field can be given in the exact same well-defined manner; just use \(\mathbb{F}_p(X) \) in place of \(\mathbb{Q} \).

It’s handy to define the ramification index of any archimedean place to be 1 and the residue class degree to be 1 if it corresponds to a real embedding, and 2 if it corresponds to a pair of complex conjugate embeddings.
With the above language in mind,
With the above language in mind, we note the following important result previously proven.

Theorem
For all places $w \in M(\mathbb{Q})$ and all number fields K we have

$$\sum_{v \in M(K)} v|w = [K:\mathbb{Q}].$$

Definition
For a number field K and a place $v \in M(K)$, the local degree $n_v = e_v f_v$, the product of the ramification index and residue class degree.

These local degrees are a handy normalization factor when considering absolute values.
With the above language in mind, we note the following important result previously proven.

Theorem

For all places $w \in M(\mathbb{Q})$ and all number fields K we have

$$\sum_{v \in M(K)} v|w = [K:\mathbb{Q}].$$

Definition

For a number field K and a place $v \in M(K)$, the *local degree* $n_v = e_v f_v$, the product of the ramification index and residue class degree.

These local degrees are a handy normalization factor when considering absolute values.
With the above language in mind, we note the following important result previously proven.

Theorem

For all places $w \in M(\mathbb{Q})$ and all number fields K

\[
\sum_{v \in M(K)} v|w = [K:\mathbb{Q}].
\]
With the above language in mind, we note the following important result previously proven.

Theorem

For all places \(w \in M(\mathbb{Q}) \) *and all number fields* \(K \) *we have*

\[
\sum_{\substack{v \in M(K) \\ v \mid w}} e_v f_v = [K: \mathbb{Q}].
\]
With the above language in mind, we note the following important result previously proven.

Theorem

For all places $w \in M(\mathbb{Q})$ and all number fields K we have

$$\sum_{\substack{\nu \in M(K) \\ \nu | w}} e_{\nu} f_{\nu} = [K : \mathbb{Q}].$$
With the above language in mind, we note the following important result previously proven.

Theorem

For all places $w \in M(\mathbb{Q})$ *and all number fields* K *we have*

$$\sum_{v \in M(K) \atop v|w} e_v f_v = [K : \mathbb{Q}].$$

Definition

For a number field K and a place $v \in M(K)$, the local degree $n_v = e_v f_v$, the product of the ramification index and residue class degree. These local degrees are a handy normalization factor when considering absolute values.
With the above language in mind, we note the following important result previously proven.

Theorem

For all places \(w \in M(\mathbb{Q}) \) and all number fields \(K \) we have

\[
\sum_{v \mid w, v \in \mathcal{M}(K)} e_v f_v = [K : \mathbb{Q}].
\]

Definition

For a number field \(K \) and a place \(v \in \mathcal{M}(K) \), the local degree \(n_v = e_v f_v \),
With the above language in mind, we note the following important result previously proven.

Theorem

For all places $w \in M(\mathbb{Q})$ and all number fields K we have

$$
\sum_{\nu \mid w} e_{\nu} f_{\nu} = [K : \mathbb{Q}].
$$

Definition

For a number field K and a place $\nu \in M(K)$, the *local degree* $n_{\nu} = e_{\nu} f_{\nu}$, the product of the ramification index and residue class degree.
With the above language in mind, we note the following important result previously proven.

Theorem

For all places \(w \in M(\mathbb{Q}) \) and all number fields \(K \) we have

\[
\sum_{v \mid w, v \in M(K)} e_v f_v = [K : \mathbb{Q}].
\]

Definition

For a number field \(K \) and a place \(v \in M(K) \), the local degree \(n_v = e_v f_v \), the product of the ramification index and residue class degree.

These local degrees are a handy normalization factor when considering absolute values.
Theorem (Product Formula)

Let K be a number field. For all $v \in \mathcal{M}(K)$ let $|\cdot|_v$ be the unique absolute value on K that extends $|\cdot|_w$ on \mathbb{Q}, where w is the place of \mathbb{Q} lying below v (i.e., $v|w$). Then for all non-zero $\alpha \in K$ we have

$$\prod_{v \in \mathcal{M}(K)} |\alpha|_v = 1.$$

Proof: Since K is the quotient field of \mathcal{O}_K, it suffices to prove this for algebraic integers. Let α be a non-zero element of \mathcal{O}_K. For a place $v|\infty$ we have $|\alpha|_v = |\sigma(\alpha)|_\infty$, where σ is the associated embedding of K into \mathbb{C} and $|\cdot|_\infty$ is the usual complex modulus. Then by the definitions

$$\prod_{v \in \mathcal{M}(K)} |\alpha|_v = |N_{K/\mathbb{Q}}(\alpha)|.$$
Theorem (Product Formula)

Let K be a number field.
Theorem (Product Formula)

Let K be a number field. For all $v \in M(K)$ let $| \cdot |_v$ be the unique absolute value on K that extends $| \cdot |_w$ on \mathbb{Q},
Theorem (Product Formula)

Let K be a number field. For all $v \in M(K)$ let $|\cdot|_v$ be the unique absolute value on K that extends $|\cdot|_w$ on \mathbb{Q}, where w is the place of \mathbb{Q} lying below v.
Theorem (Product Formula)

Let K be a number field. For all $v \in M(K)$ let $|\cdot|_v$ be the unique absolute value on K that extends $|\cdot|_w$ on \mathbb{Q}, where w is the place of \mathbb{Q} lying below v (i.e., $v|w$).
Let K be a number field. For all $v \in M(K)$ let $| \cdot |_v$ be the unique absolute value on K that extends $| \cdot |_w$ on \mathbb{Q}, where w is the place of \mathbb{Q} lying below v (i.e., $v|w$). Then for all non-zero $\alpha \in K$ we have

$$\prod_{v \in M(K)} |\alpha|_v = 1.$$
Theorem (Product Formula)

Let K be a number field. For all $v \in M(K)$ let $|\cdot|_v$ be the unique absolute value on K that extends $|\cdot|_w$ on \mathbb{Q}, where w is the place of \mathbb{Q} lying below v (i.e., $v|w$). Then for all non-zero $\alpha \in K$ we have

$$\prod_{v \in M(K)} |\alpha|_v^{n_v} = 1.$$
Theorem (Product Formula)

Let K be a number field. For all $v \in M(K)$ let $|\cdot|_v$ be the unique absolute value on K that extends $|\cdot|_w$ on \mathbb{Q}, where w is the place of \mathbb{Q} lying below v (i.e., $v|w$). Then for all non-zero $\alpha \in K$ we have

$$\prod_{v \in M(K)} |\alpha|_v^{n_v} = 1.$$

Proof:
Theorem (Product Formula)

Let K be a number field. For all $v \in \mathcal{M}(K)$ let $|\cdot|_v$ be the unique absolute value on K that extends $|\cdot|_w$ on \mathbb{Q}, where w is the place of \mathbb{Q} lying below v (i.e., $v|w$). Then for all non-zero $\alpha \in K$ we have

$$\prod_{v \in \mathcal{M}(K)} |\alpha|_v^{n_v} = 1.$$

Proof: Since K is the quotient field of \mathcal{O}_K,

Math 681, Wednesday, March 3 and Friday, March 5
Theorem (Product Formula)

Let K be a number field. For all $v \in M(K)$ let $|\cdot|_v$ be the unique absolute value on K that extends $|\cdot|_w$ on \mathbb{Q}, where w is the place of \mathbb{Q} lying below v (i.e., $v|w$). Then for all non-zero $\alpha \in K$ we have

$$\prod_{v \in M(K)} |\alpha|_v^{n_v} = 1.$$

Proof: Since K is the quotient field of \mathcal{O}_K, it suffices to prove this for algebraic integers.
Theorem (Product Formula)

Let K be a number field. For all $v \in M(K)$ let $|\cdot|_v$ be the unique absolute value on K that extends $|\cdot|_w$ on \mathbb{Q}, where w is the place of \mathbb{Q} lying below v (i.e., $v|w$). Then for all non-zero $\alpha \in K$ we have

$$\prod_{v \in M(K)} |\alpha|_v^{n_v} = 1.$$

Proof: Since K is the quotient field of \mathcal{O}_K, it suffices to prove this for algebraic integers. Let α be a non-zero element of \mathcal{O}_K.

Math 681, Wednesday, March 3 and Friday, March 5
Theorem (Product Formula)

Let K be a number field. For all $v \in M(K)$ let $|\cdot|_v$ be the unique absolute value on K that extends $|\cdot|_w$ on \mathbb{Q}, where w is the place of \mathbb{Q} lying below v (i.e., $v|w$). Then for all non-zero $\alpha \in K$ we have

$$\prod_{v \in M(K)} |\alpha|_v^{n_v} = 1.$$

Proof: Since K is the quotient field of \mathcal{O}_K, it suffices to prove this for algebraic integers. Let α be a non-zero element of \mathcal{O}_K.

For a place $v|\infty$ we have $|\alpha|_v = |\sigma(\alpha)|_\infty$, where σ varies over embeddings of K into C. For a place $v|\mathbb{Q}$, we can use the Galois theory of K/\mathbb{Q} to show that $|\alpha|_v = |\sigma(\alpha)|_v$ for all embeddings σ of K into C.

Thus, we have

$$\prod_{v \in M(K)} |\alpha|_v^{n_v} = |\text{Norm}(\alpha)_{K/\mathbb{Q}}|.$$
Theorem (Product Formula)

Let K be a number field. For all $v \in M(K)$ let $|\cdot|_v$ be the unique absolute value on K that extends $|\cdot|_w$ on \mathbb{Q}, where w is the place of \mathbb{Q} lying below v (i.e., $v|w$). Then for all non-zero $\alpha \in K$ we have

$$\prod_{v \in M(K)} |\alpha|_v^{n_v} = 1.$$

Proof: Since K is the quotient field of \mathcal{O}_K, it suffices to prove this for algebraic integers. Let α be a non-zero element of \mathcal{O}_K.

For a place $v|\infty$ we have $|\alpha|_v = |\sigma(\alpha)|_\infty$, where σ is the associated embedding of K into \mathbb{C} and $|\cdot|_\infty$ is the usual complex modulus.
Theorem (Product Formula)

Let K be a number field. For all $v \in M(K)$ let $|\cdot|_v$ be the unique absolute value on K that extends $|\cdot|_w$ on \mathbb{Q}, where w is the place of \mathbb{Q} lying below v (i.e., $v|w$). Then for all non-zero $\alpha \in K$ we have

$$\prod_{v \in M(K)} |\alpha|_v^{n_v} = 1.$$

Proof: Since K is the quotient field of \mathcal{O}_K, it suffices to prove this for algebraic integers. Let α be a non-zero element of \mathcal{O}_K.

For a place $v|\infty$ we have $|\alpha|_v = |\sigma(\alpha)|_\infty$, where σ is the associated embedding of K into \mathbb{C} and $|\cdot|_\infty$ is the usual complex modulus. Then by the definitions

$$\prod_{v \in M(K)} |\alpha|_v^{n_v} = |N_{K/\mathbb{Q}}(\alpha)|. \quad (3)$$
For a non-archimedean place v lying above a prime p.

Further, $\text{ord}_v(p) = e_v$.

This implies that $|\alpha|_v = \text{N}(P) - \text{ord}_v(\alpha)/n_v$ for all $\alpha \in K^\times$.

Now via the above and the definitions,

$$\prod_{v \in M(K)} v \nmid \infty |\alpha|_v = N(\alpha \mathcal{O}_K) - 1.$$

(4)

Combining (3) and (4) together with a previous exercise finishes our proof.
For a non-archimedean place ν lying above a prime p we have $|p|_\nu = p^{-1}$.
For a non-archimedean place v lying above a prime p we have $|p|_v = p^{-1}$. On the other hand,
For a non-archimedean place \(v \) lying above a prime \(p \) we have \(|p|_v = p^{-1} \). On the other hand, we have \(N(\mathfrak{P}) = p^{f_v} \),
For a non-archimedean place v lying above a prime p we have $|p|_v = p^{-1}$. On the other hand, we have $N(\mathfrak{p}) = p^{f_v}$, where \mathfrak{p} is the prime ideal associated with v.

Combining (3) and (4) together with a previous exercise finishes our proof.
For a non-archimedean place v lying above a prime p we have $|p|_v = p^{-1}$. On the other hand, we have $N(\mathfrak{P}) = p^{f_v}$, where \mathfrak{P} is the prime ideal associated with v. Further, $\text{ord}_v(p) = e_v$.
For a non-archimedean place v lying above a prime p we have $|p|_v = p^{-1}$. On the other hand, we have $N(\mathfrak{p}) = p^{f_v}$, where \mathfrak{p} is the prime ideal associated with v. Further, $\text{ord}_v(p) = e_v$. Thus $|p|_v = N(\mathfrak{p})^{-\text{ord}_v(p)/n_v}$.

Combining (3) and (4) together with a previous exercise finishes our proof.
For a non-archimedean place v lying above a prime p we have $|p|_v = p^{-1}$. On the other hand, we have $N(\mathfrak{P}) = p^{f_v}$, where \mathfrak{P} is the prime ideal associated with v. Further, $\text{ord}_v(p) = e_v$. Thus $|p|_v = N(\mathfrak{P})^{-\text{ord}_v(p)/n_v}$. This implies that $|\alpha|_v = N(\mathfrak{P})^{-\text{ord}_v(\alpha)/n_v}$ for all $\alpha \in K^\times$.

Combining (3) and (4) together with a previous exercise finishes our proof.
For a non-archimedean place v lying above a prime p we have $|p|_v = p^{-1}$. On the other hand, we have $N(\mathfrak{P}) = p^{f_v}$, where \mathfrak{P} is the prime ideal associated with v. Further, $\text{ord}_v(p) = e_v$. Thus $|p|_v = N(\mathfrak{P})^{-\text{ord}_v(p)/n_v}$.

This implies that $|\alpha|_v = N(\mathfrak{P})^{-\text{ord}_v(\alpha)/n_v}$ for all $\alpha \in K^\times$, since we know that $|\alpha|_v = N(\mathfrak{P})^{-\rho \text{ord}_v(\alpha)}$ for some $\rho > 0$.

Math 681, Wednesday, March 3 and Friday, March 5
For a non-archimedean place ν lying above a prime p we have $|p|_\nu = p^{-1}$. On the other hand, we have $N(\mathfrak{P}) = p^{f_\nu}$, where \mathfrak{P} is the prime ideal associated with ν. Further, $\text{ord}_\nu(p) = e_\nu$. Thus $|p|_\nu = N(\mathfrak{P})^{-\text{ord}_\nu(p)/n_\nu}$.

This implies that $|\alpha|_\nu = N(\mathfrak{P})^{-\text{ord}_\nu(\alpha)/n_\nu}$ for all $\alpha \in K^\times$, since we know that $|\alpha|_\nu = N(\mathfrak{P})^{-\rho \text{ord}_\nu(\alpha)}$ for some $\rho > 0$.

Now via the above and the definitions,
For a non-archimedean place \(v \) lying above a prime \(p \) we have \(|p|_v = p^{-1} \). On the other hand, we have \(N(\mathfrak{p}) = p^{f_v} \), where \(\mathfrak{p} \) is the prime ideal associated with \(v \). Further, \(\text{ord}_v(p) = e_v \). Thus \(|p|_v = N(\mathfrak{p})^{-\text{ord}_v(p)/n_v} \).

This implies that \(|\alpha|_v = N(\mathfrak{p})^{-\text{ord}_v(\alpha)/n_v} \) for all \(\alpha \in K^\times \), since we know that \(|\alpha|_v = N(\mathfrak{p})^{-\rho \text{ord}_v(\alpha)} \) for some \(\rho > 0 \).

Now via the above and the definitions,

\[
\prod_{v \in M(K) \setminus \{\infty\}} |\alpha|_v^{n_v}
\]
For a non-archimedean place v lying above a prime p we have $|p|_v = p^{-1}$. On the other hand, we have $N(\mathfrak{P}) = p^{f_v}$, where \mathfrak{P} is the prime ideal associated with v. Further, $\text{ord}_v(p) = e_v$. Thus $|p|_v = N(\mathfrak{P})^{-\text{ord}_v(p)/n_v}$.

This implies that $|\alpha|_v = N(\mathfrak{P})^{-\text{ord}_v(\alpha)/n_v}$ for all $\alpha \in K^\times$, since we know that $|\alpha|_v = N(\mathfrak{P})^{-\rho \text{ord}_v(\alpha)}$ for some $\rho > 0$.

Now via the above and the definitions,

$$
\prod_{\substack{v \in M(K) \\ v \nmid \infty}} |\alpha|_v^{n_v} = N(\alpha \mathfrak{O}_K)^{-1}.
$$

(4)
For a non-archimedean place \(v \) lying above a prime \(p \) we have \(|p|_v = p^{-1} \). On the other hand, we have \(N(\mathfrak{P}) = p^{f_v} \), where \(\mathfrak{P} \) is the prime ideal associated with \(v \). Further, \(\text{ord}_v(p) = e_v \). Thus \(|p|_v = N(\mathfrak{P})^{-\text{ord}_v(p)/n_v} \).

This implies that \(|\alpha|_v = N(\mathfrak{P})^{-\text{ord}_v(\alpha)/n_v} \) for all \(\alpha \in K^\times \), since we know that \(|\alpha|_v = N(\mathfrak{P})^{-\rho \text{ord}_v(\alpha)} \) for some \(\rho > 0 \).

Now via the above and the definitions,

\[
\prod_{\substack{v \in M(K) \\
 v \nmid \infty}} |\alpha|_v^{n_v} = N(\alpha \mathcal{O}_K)^{-1}. \tag{4}
\]

Combining (3) and (4) together with a previous exercise finishes our proof.
We would like to consider function fields in the same way that we have dealt with number fields above.
We would like to consider function fields in the same way that we have dealt with number fields above. The first order of business is the Fundamental Theorem.
We would like to consider function fields in the same way that we have dealt with number fields above. The first order of business is the Fundamental Theorem. We restate it here, but using new language.
We would like to consider function fields in the same way that we have dealt with number fields above. The first order of business is the Fundamental Theorem. We restate it here, but using new language.

Theorem (Fundamental Theorem)
We would like to consider function fields in the same way that we have dealt with number fields above. The first order of business is the Fundamental Theorem. We restate it here, but using new language.

Theorem (Fundamental Theorem)

The non-zero fractional ideals of a number field K
We would like to consider function fields in the same way that we have dealt with number fields above. The first order of business is the Fundamental Theorem. We restate it here, but using new language.

Theorem (Fundamental Theorem)

*The non-zero fractional ideals of a number field K is the free abelian group generated by the non-archimedean places of K.***
We would like to consider function fields in the same way that we have dealt with number fields above. The first order of business is the Fundamental Theorem. We restate it here, but using new language.

Theorem (Fundamental Theorem)

The non-zero fractional ideals of a number field K is the free abelian group generated by the non-archimedean places of K.

We further note that the norm is a group homomorphism from the (multiplicative) group of non-zero fractional ideals into \mathbb{Q}^\times.
We would like to consider function fields in the same way that we have dealt with number fields above. The first order of business is the Fundamental Theorem. We restate it here, but using new language.

Theorem (Fundamental Theorem)

The non-zero fractional ideals of a number field K is the free abelian group generated by the non-archimedean places of K.

We further note that the norm is a group homomorphism from the (multiplicative) group of non-zero fractional ideals into \mathbb{Q}^\times.

This leads us to the following.
Definition

For a function field K, the divisor group $\text{Div}(K)$ is the free abelian group generated by the places $M(K)$. Elements of this group, called divisors, are written additively:

$$A = \sum_{v \in M(K)} z_v \cdot v,$$

where $z_v \in \mathbb{Z}$, and $z_v = 0$ almost always (here "almost always" means "for all but finitely many"). The integer coefficients z_v are the order of the divisor at the place v and written $\text{ord}_v(A) = z_v$.

Note how any idele $(\alpha_v)_v \in K \times A$ leads to a divisor:

$$\text{div}((\alpha_v)_v) = \sum_{v \in M(K)} \text{ord}_v(\alpha_v) \cdot v.$$
Definition
For a function field K, the divisor group $\text{Div}(K)$ is the free abelian group generated by the places $M(K)$. Elements of this group, called divisors, are written additively:

$$A = \sum_{v \in M(K)} z_v \cdot v,$$

where $z_v \in \mathbb{Z}$, $z_v = 0$ almost always (here "almost always" means "for all but finitely many").

The integer coefficients z_v are the order of the divisor at the place v and written $\text{ord}_v(A) = z_v$.

Note how any idele $(\alpha_v)_v \in K^\times \mathbb{A}$ leads to a divisor:

$$\text{div}((\alpha_v)_v) = \sum_{v \in M(K)} \text{ord}_v(\alpha_v) \cdot v.$$
Definition

For a function field \(K \), the *divisor group* \(\text{Div}(K) \) is the free abelian group generated by the places \(M(K) \).

Elements of this group, called divisors, are written additively:

\[
A = \sum_{v \in M(K)} z_v v,
\]

where \(z_v \in \mathbb{Z} \), and \(z_v = 0 \) almost always (here “almost always” means “for all but finitely many”).

The integer coefficients \(z_v \) are the order of the divisor at the place \(v \) and written \(\text{ord}_v(A) = z_v \).

Note how any idele \((\alpha_v)_v \in K^\times A\) leads to a divisor:

\[
\text{div}\left((\alpha_v)_v\right) = \sum_{v \in M(K)} \text{ord}_v(\alpha_v) v.
\]
Definition

For a function field K, the *divisor group* $\text{Div}(K)$ is the free abelian group generated by the places $M(K)$. Elements of this group,
Definition

For a function field K, the *divisor group* $\text{Div}(K)$ is the free abelian group generated by the places $M(K)$. Elements of this group, called divisors,
Definition

For a function field K, the \textit{divisor group} $\text{Div}(K)$ is the free abelian group generated by the places $M(K)$. Elements of this group, called divisors, are written additively:

$A = \sum_{v \in M(K)} z_v \cdot v$, $z_v \in \mathbb{Z}$, $z_v = 0$ almost always.

(Here “almost always” means “for all but finitely many”.)

The integer coefficients z_v are the \textit{order} of the divisor at the place v and written $\text{ord}_v(A) = z_v$.

Note how any idele $(\alpha_v)_v \in K \times A$ leads to a divisor: $\text{div}((\alpha_v)_v) = \sum_{v \in M(K)} \text{ord}_v((\alpha_v)_v) \cdot v$.

Math 681, Wednesday, March 3 and Friday, March 5
For a function field K, the \textit{divisor group} $\text{Div}(K)$ is the free abelian group generated by the places $M(K)$. Elements of this group, called divisors, are written additively:

$$A = \sum_{v \in M(K)} z_v \cdot v, \quad z_v \in \mathbb{Z}, \quad z_v = 0 \text{ almost always.}$$
Definition

For a function field K, the divisor group $\text{Div}(K)$ is the free abelian group generated by the places $M(K)$. Elements of this group, called divisors, are written additively:

$$A = \sum_{v \in M(K)} z_v \cdot v,$$

$z_v \in \mathbb{Z}$, $z_v = 0$ almost always.

(Here “almost always” means “for all but finitely many.”)
Definition

For a function field K, the divisor group $\text{Div}(K)$ is the free abelian group generated by the places $M(K)$. Elements of this group, called divisors, are written additively:

$$A = \sum_{v \in M(K)} z_v \cdot v, \quad z_v \in \mathbb{Z}, \quad z_v = 0 \text{ almost always.}$$

(Here “almost always” means “for all but finitely many.”) The integer coefficients z_v are the order of the divisor at the place v.
Definition

For a function field K, the \textit{divisor group} $\text{Div}(K)$ is the free abelian group generated by the places $M(K)$. Elements of this group, called divisors, are written additively:

$$\mathcal{A} = \sum_{\nu \in M(K)} z_{\nu} \cdot \nu, \quad z_{\nu} \in \mathbb{Z}, \quad z_{\nu} = 0 \text{ almost always.}$$

(Here “almost always” means “for all but finitely many.”) The integer coefficients z_{ν} are the \textit{order of the divisor at the place} ν and written $\text{ord}_{\nu}(\mathcal{A}) = z_{\nu}$.
Definition

For a function field K, the divisor group $\text{Div}(K)$ is the free abelian group generated by the places $M(K)$. Elements of this group, called divisors, are written additively:

$$\mathcal{A} = \sum_{v \in M(K)} z_v \cdot v, \quad z_v \in \mathbb{Z}, \quad z_v = 0 \text{ almost always.}$$

(Here “almost always” means “for all but finitely many.”) The integer coefficients z_v are the order of the divisor at the place v and written $\text{ord}_v(\mathcal{A}) = z_v$.

Note how any idele $(\alpha_v)_v \in K_\mathbb{A}^\times$ leads to a divisor:
Definition

For a function field K, the *divisor group* $\text{Div}(K)$ is the free abelian group generated by the places $M(K)$. Elements of this group, called divisors, are written additively:

$$\mathcal{A} = \sum_{v \in M(K)} z_v \cdot \nu, \quad z_v \in \mathbb{Z}, \quad z_v = 0 \text{ almost always}.$$

(Here “almost always” means “for all but finitely many.”) The integer coefficients z_v are the *order of the divisor at the place* ν and written $\text{ord}_\nu(\mathcal{A}) = z_v$.

Note how any idele $(\alpha_\nu)_\nu \in K_\mathbb{A}^\times$ leads to a divisor:

$$\text{div} \left((\alpha_\nu)_\nu \right)$$
Definition

For a function field K, the divisor group $\text{Div}(K)$ is the free abelian group generated by the places $M(K)$. Elements of this group, called divisors, are written additively:

$$A = \sum_{v \in M(K)} z_v \cdot v, \quad z_v \in \mathbb{Z}, \quad z_v = 0 \text{ almost always.}$$

(Here “almost always” means “for all but finitely many.”) The integer coefficients z_v are the order of the divisor at the place v and written $\text{ord}_v(A) = z_v$.

Note how any idele $(\alpha_v)_v \in K_{\mathbb{A}}^\times$ leads to a divisor:

$$\text{div} \left((\alpha_v)_v \right) = \sum_{v \in M(K)} \text{ord}_v(\alpha_v) \cdot v.$$
Recall the definition of the degree of a place/valuation ring for a function field:

\[\deg(v) = \left[\frac{\mathbb{R}}{M_F} \right]. \]

(Here \(p \) is the characteristic of \(K \); \(\deg(v) \) is some multiple of the residue class degree.)

This degree function can be extended to \(\text{Div}(K) \) giving a group homomorphism \(\deg : \text{Div}(K) \to \mathbb{Z} \) via

\[\deg(A) := \sum_{v \in M(K)} \text{ord}_v(A) \deg(v). \]

We have an obvious partial ordering of divisors:

\[A \geq B \text{ if } \text{ord}_v(A) \geq \text{ord}_v(B) \text{ for all } v \in M(K). \]

We say a divisor \(A \) is effective if \(A \geq 0 \).

(That's the zero divisor, not the number zero.)

Note that every divisor is uniquely written as a difference of effective divisors:

\[A = A^+ - A^- \]

Here \(A^+ = \sum_{v \in M(K)} \text{ord}_v(A) > 0 \cdot v \), \(A^- = \sum_{v \in M(K)} \text{ord}_v(A) < 0 \cdot v \).
Recall the definition of the degree of a place/valuation ring for a function field: $\text{deg}(v) = [R/M : \mathbb{F}_p]$.

This degree function can be extended to $\text{Div}(K)$ giving a group homomorphism $\text{deg} : \text{Div}(K) \to \mathbb{Z}$ via $\text{deg}(A) := \sum_{v \in M(K)} \text{ord}_v(A) \cdot \text{deg}(v)$.

We have an obvious partial ordering of divisors: $A \geq B$ if $\text{ord}_v(A) \geq \text{ord}_v(B)$ for all $v \in M(K)$.

We say a divisor A is effective if $A \geq 0$. (That's the zero divisor, not the number zero.)

Note that every divisor is uniquely written as a difference of effective divisors: $A = A^+ - A^-$. Here $A^+ = \sum_{v \in M(K)} \text{ord}_v(A) > 0 \cdot v$, $A^- = \sum_{v \in M(K)} \text{ord}_v(A) < 0 \cdot v$.

Math 681, Wednesday, March 3 and Friday, March 5
Recall the definition of the degree of a place/valuation ring for a function field: \(\deg(v) = [R/M : \mathbb{F}_p] \). (Here \(p \) is the characteristic of \(K \); \(\deg(v) \) is some multiple of the residue class degree.)
Recall the definition of the degree of a place/valuation ring for a function field: \(\text{deg}(v) = \left[R/M : \mathbb{F}_p \right] \). (Here \(p \) is the characteristic of \(K \); \(\text{deg}(v) \) is some multiple of the residue class degree.)

This degree function can be extended to \(\text{Div}(K) \).
Recall the definition of the degree of a place/valuation ring for a function field: \(\text{deg}(\nu) = [R//\mathfrak{m} : \mathbb{F}_p] \). (Here \(p \) is the characteristic of \(K \); \(\text{deg}(\nu) \) is some multiple of the residue class degree.)

This degree function can be extended to \(\text{Div}(K) \) giving a group homomorphism \(\text{deg} : \text{Div}(K) \to \mathbb{Z} \) via
Recall the definition of the degree of a place/valuation ring for a function field: \(\text{deg}(\nu) = [R/M : F_p] \). (Here \(p \) is the characteristic of \(K \); \(\text{deg}(\nu) \) is some multiple of the residue class degree.)

This degree function can be extended to \(\text{Div}(K) \) giving a group homomorphism \(\text{deg} : \text{Div}(K) \to \mathbb{Z} \) via

\[
\text{deg}(A) := \sum_{\nu \in M(K)} \text{ord}_\nu(A) \text{deg}(\nu).
\]

We have an obvious partial ordering of divisors:

\(A \geq B \) if \(\text{ord}_\nu(A) \geq \text{ord}_\nu(B) \) for all \(\nu \in M(K) \).

We say a divisor \(A \) is effective if \(A \geq 0 \).

(That's the zero divisor, not the number zero.)

Note that every divisor is uniquely written as a difference of effective divisors:

\[
A = A^+ - A^-.
\]

Here \(A^+ = \sum_{\nu \in M(K)} \text{ord}_\nu(A) > 0 \nu \), \(A^- = \sum_{\nu \in M(K)} \text{ord}_\nu(A) < 0 \nu \).
Recall the definition of the degree of a place/valuation ring for a function field: \(\deg(v) = [R/M : \mathbb{F}_p] \). (Here \(p \) is the characteristic of \(K \); \(\deg(v) \) is some multiple of the residue class degree.)

This degree function can be extended to \(\text{Div}(K) \) giving a group homomorphism \(\deg : \text{Div}(K) \to \mathbb{Z} \) via

\[
\deg(A) := \sum_{v \in M(K)} \text{ord}_v(A) \deg(v).
\]

We have an obvious partial ordering of divisors:
Recall the definition of the degree of a place/valuation ring for a function field: $\deg(\nu) = [R/\mathfrak{M} : \mathbb{F}_p]$. (Here p is the characteristic of K; $\deg(\nu)$ is some multiple of the residue class degree.)

This degree function can be extended to $\text{Div}(K)$ giving a group homomorphism $\deg : \text{Div}(K) \rightarrow \mathbb{Z}$ via

$$\deg(\mathcal{A}) := \sum_{\nu \in M(K)} \text{ord}_\nu(\mathcal{A}) \deg(\nu).$$

We have an obvious partial ordering of divisors: $\mathcal{A} \geq \mathcal{B}$ if $\text{ord}_\nu(\mathcal{A}) \geq \text{ord}_\nu(\mathcal{B})$ for all $\nu \in M(K)$.
Recall the definition of the degree of a place/valuation ring for a function field: \(\text{deg}(\nu) = [R/M : \mathbb{F}_p] \). (Here \(p \) is the characteristic of \(K \); \(\text{deg}(\nu) \) is some multiple of the residue class degree.)

This degree function can be extended to \(\text{Div}(K) \) giving a group homomorphism \(\text{deg} : \text{Div}(K) \to \mathbb{Z} \) via

\[
\text{deg}(\mathcal{A}) := \sum_{\nu \in M(K)} \text{ord}_\nu(\mathcal{A}) \text{deg}(\nu).
\]

We have an obvious partial ordering of divisors: \(\mathcal{A} \geq \mathcal{B} \) if \(\text{ord}_\nu(\mathcal{A}) \geq \text{ord}_\nu(\mathcal{B}) \) for all \(\nu \in M(K) \). We say a divisor \(\mathcal{A} \) is effective if \(\mathcal{A} \geq 0 \).
Recall the definition of the degree of a place/valuation ring for a function field: \(\deg(v) = [R/ \mathfrak{M} : \mathbb{F}_p] \). (Here \(p \) is the characteristic of \(K \); \(\deg(v) \) is some multiple of the residue class degree.)

This degree function can be extended to \(\text{Div}(K) \) giving a group homomorphism \(\deg : \text{Div}(K) \to \mathbb{Z} \) via

\[
\deg(A) := \sum_{v \in M(K)} \text{ord}_v(A) \deg(v).
\]

We have an obvious partial ordering of divisors: \(A \geq B \) if \(\text{ord}_v(A) \geq \text{ord}_v(B) \) for all \(v \in M(K) \). We say a divisor \(A \) is effective if \(A \geq 0 \). (That's the zero divisor, not the number zero.)
Recall the definition of the degree of a place/valuation ring for a function field: \(\text{deg}(\nu) = [R/\mathfrak{m} : \mathbb{F}_p] \). (Here \(p \) is the characteristic of \(K \); \(\text{deg}(\nu) \) is some multiple of the residue class degree.)

This degree function can be extended to \(\text{Div}(K) \) giving a group homomorphism \(\text{deg} : \text{Div}(K) \to \mathbb{Z} \) via

\[
\text{deg}(\mathcal{A}) := \sum_{\nu \in \mathcal{M}(K)} \text{ord}_\nu(\mathcal{A}) \text{deg}(\nu).
\]

We have an obvious partial ordering of divisors: \(\mathcal{A} \geq \mathcal{B} \) if \(\text{ord}_\nu(\mathcal{A}) \geq \text{ord}_\nu(\mathcal{B}) \) for all \(\nu \in \mathcal{M}(K) \). We say a divisor \(\mathcal{A} \) is effective if \(\mathcal{A} \geq 0 \). (That's the zero divisor, not the number zero.) Note that every divisor is uniquely written as a difference of effective divisors:
Recall the definition of the degree of a place/valuation ring for a function field: \(\deg(v) = [R/M : \mathbb{F}_p] \). (Here \(p \) is the characteristic of \(K \); \(\deg(v) \) is some multiple of the residue class degree.)

This degree function can be extended to \(\text{Div}(K) \) giving a group homomorphism \(\deg : \text{Div}(K) \to \mathbb{Z} \) via

\[
\deg(A) := \sum_{v \in M(K)} \text{ord}_v(A) \deg(v).
\]

We have an obvious partial ordering of divisors: \(A \geq B \) if \(\text{ord}_v(A) \geq \text{ord}_v(B) \) for all \(v \in M(K) \). We say a divisor \(A \) is effective if \(A \geq 0 \). (That’s the zero divisor, not the number zero.) Note that every divisor is uniquely written as a difference of effective divisors:

\[
A = A^+ - A^-.
\]
Recall the definition of the degree of a place/valuation ring for a function field: $\deg(v) = [R/M : \mathbb{F}_p]$. (Here p is the characteristic of K; $\deg(v)$ is some multiple of the residue class degree.)

This degree function can be extended to $\text{Div}(K)$ giving a group homomorphism $\deg : \text{Div}(K) \to \mathbb{Z}$ via

$$\deg(\mathcal{A}) := \sum_{v \in M(K)} \text{ord}_v(\mathcal{A}) \deg(v).$$

We have an obvious partial ordering of divisors: $\mathcal{A} \geq \mathcal{B}$ if $\text{ord}_v(\mathcal{A}) \geq \text{ord}_v(\mathcal{B})$ for all $v \in M(K)$. We say a divisor \mathcal{A} is effective if $\mathcal{A} \geq 0$. (That’s the zero divisor, not the number zero.) Note that every divisor is uniquely written as a difference of effective divisors:

$$\mathcal{A} = \mathcal{A}^+ - \mathcal{A}^-.$$

Here

$$\mathcal{A}^+ = \sum_{\substack{v \in M(K) \
\text{ord}_v(\mathcal{A}) > 0}} \text{ord}_v(\mathcal{A}) \cdot v,$$
Recall the definition of the degree of a place/valuation ring for a function field: \(\deg(v) = \left[R/M : \mathbb{F}_p \right] \). (Here \(p \) is the characteristic of \(K \); \(\deg(v) \) is some multiple of the residue class degree.)

This degree function can be extended to \(\text{Div}(K) \) giving a group homomorphism \(\deg : \text{Div}(K) \to \mathbb{Z} \) via

\[
\deg(A) := \sum_{v \in M(K)} \text{ord}_v(A) \deg(v).
\]

We have an obvious partial ordering of divisors: \(A \geq B \) if \(\text{ord}_v(A) \geq \text{ord}_v(B) \) for all \(v \in M(K) \). We say a divisor \(A \) is effective if \(A \geq 0 \). (That’s the zero divisor, not the number zero.) Note that every divisor is uniquely written as a difference of effective divisors:

\[
A = A^+ - A^-.
\]

Here

\[
A^+ = \sum_{\substack{v \in M(K) \\
\text{ord}_v(A) > 0}} \text{ord}_v(A) \cdot v,
\]

\[
A^- = \sum_{\substack{v \in M(K) \\
\text{ord}_v(A) < 0}} - \text{ord}_v(A) \cdot v.
\]
The divisor group \(\text{Div}(K) \) is the function field analog of the group of non-zero fractional ideals of a number field.
The divisor group $\text{Div}(K)$ is the function field analog of the group of non-zero fractional ideals of a number field.

With that identification, the zero divisor is the analog of \mathcal{O}_K.
The divisor group $\text{Div}(K)$ is the function field analog of the group of non-zero fractional ideals of a number field.

With that identification, the zero divisor is the analog of \mathcal{O}_K.

The effective divisors are the analogs of integral ideals.
The divisor group $\text{Div}(K)$ is the function field analog of the group of non-zero fractional ideals of a number field.

With that identification, the zero divisor is the analog of \mathcal{O}_K.
The effective divisors are the analogs of integral ideals.
The degree function is a logarithmic analog of the norm function.
The divisor group $\text{Div}(K)$ is the function field analog of the group of non-zero fractional ideals of a number field.

With that identification, the zero divisor is the analog of \mathcal{O}_K.

The effective divisors are the analogs of integral ideals.

The degree function is a logarithmic analog of the norm function.

Whither the analogs of principal (fractional) ideals?
Proposition

Let K be a function field. For every non-zero $\alpha \in K$ we get a principal divisor $\text{div}(\alpha) := \sum_{v \in M(K)} \text{ord}_v(\alpha) \cdot v$. That is to say, there are only finitely many places $v \in M(K)$ for which $\text{ord}_v(\alpha) \neq 0$. Indeed, for such an α the zero divisor and pole divisor $\text{div}(\alpha) + = \sum_{v \in M(K)} \text{ord}_v(\alpha) > 0 \text{ord}_v(\alpha) \cdot v$, $\text{div}(\alpha) - = \sum_{v \in M(K)} \text{ord}_v(\alpha) < 0 \text{ord}_v(\alpha) \cdot v$, respectively, satisfy $\deg(\text{div}(\alpha) +), \deg(\text{div}(\alpha) -) \leq [K: F_p(\alpha)]$.

Math 681, Wednesday, March 3 and Friday, March 5
Proposition

Let K be a function field.
Proposition

Let K be a function field. For every non-zero $\alpha \in K$ we get a principal divisor

$$\text{div} (\alpha) := \sum_{v \in M(K)} \text{ord}_v (\alpha) \cdot v.$$
Proposition

Let K be a function field. For every non-zero $\alpha \in K$ we get a principal divisor

$$\text{div}(\alpha) := \sum_{\nu \in M(K)} \text{ord}_\nu(\alpha) \cdot \nu.$$
Proposition

Let K be a function field. For every non-zero $\alpha \in K$ we get a principal divisor

$$\text{div}(\alpha) := \sum_{v \in M(K)} \text{ord}_v(\alpha) \cdot v.$$

That is to say, there are only finitely many places $v \in M(K)$ for which $\text{ord}_v(\alpha) \neq 0$.

Proposition

Let K be a function field. For every non-zero $\alpha \in K$ we get a principal divisor

$$\text{div}(\alpha) := \sum_{v \in M(K)} \text{ord}_v(\alpha) \cdot v.$$

That is to say, there are only finitely many places $v \in M(K)$ for which $\text{ord}_v(\alpha) \neq 0$. Indeed, for such an α
Proposition

Let K be a function field. For every non-zero $\alpha \in K$ we get a principal divisor

$$\text{div}(\alpha) := \sum_{\nu \in M(K)} \text{ord}_\nu(\alpha) \cdot \nu.$$

That is to say, there are only finitely many places $\nu \in M(K)$ for which $\text{ord}_\nu(\alpha) \neq 0$. Indeed, for such an α the zero divisor and pole divisor

$$\text{div}(\alpha)^+ = \sum_{\nu \in M(K) \atop \text{ord}_\nu(\alpha) > 0} \text{ord}_\nu(\alpha) \cdot \nu,$$

$$\text{div}(\alpha)^- = \sum_{\nu \in M(K) \atop -\text{ord}_\nu(\alpha) < 0} \text{ord}_\nu(\alpha) \cdot \nu,$$

respectively,
Proposition

Let K be a function field. For every non-zero $\alpha \in K$ we get a principal divisor

$$\text{div}(\alpha) := \sum_{v \in M(K)} \text{ord}_v(\alpha) \cdot v.$$

That is to say, there are only finitely many places $v \in M(K)$ for which $\text{ord}_v(\alpha) \neq 0$. Indeed, for such an α the zero divisor and pole divisor

$$\text{div}(\alpha)^+ = \sum_{v \in M(K) \atop \text{ord}_v(\alpha) > 0} \text{ord}_v(\alpha) \cdot v, \quad \text{div}(\alpha)^- = \sum_{v \in M(K) \atop \text{ord}_v(\alpha) < 0} \text{ord}_v(\alpha) \cdot v,$$

respectively, satisfy

$$\deg (\text{div}(\alpha)^+), \quad \deg (\text{div}(\alpha)^-) \leq [K : \mathbb{F}_p(\alpha)].$$
Proof:

We will show that if \(v_1, \ldots, v_r \in M(K) \) with \(\text{ord}_{v_i}(\alpha) > 0 \) for all, then

\[
\sum_{i=1}^{r} \text{ord}_{v_i}(\alpha) \deg(v_i) \leq [K:F]_{\mathbb{P}(\alpha)}.
\]

(5)

For notational convenience set \(e_i = \text{ord}_{v_i}(\alpha) \) and \(f_i = \deg(v_i) \).

For each \(i = 1, \ldots, r \), we use the Weak Approximation Theorem to prove the existence of \(\pi_i \in K \) with

\[
\text{ord}_{v_j}(\pi_i) = \begin{cases}
1 & \text{if } i = j, \\
0 & \text{otherwise}.
\end{cases}
\]

Next, for each \(i = 1, \ldots, r \), choose \(\beta_{i,1}, \ldots, \beta_{i,f_i} \in R_i \) with \(R_i/M_i = \{ \beta_{i,j} + M_i : j = 1, \ldots, f_i \} \), where \(R_i \) is the valuation ring for \(v_i \) with maximal ideal \(M_i \).
Proof: We will show that if \(\nu_1, \ldots, \nu_r \in \mathcal{M}(K) \) with \(\text{ord}_{\nu_i}(\alpha) > 0 \) for all,
Proof: We will show that if \(\nu_1, \ldots, \nu_r \in M(K) \) with \(\text{ord}_{\nu_i}(\alpha) > 0 \) for all, then

\[
\sum_{i=1}^{r} \text{ord}_{\nu_i}(\alpha) \deg(\nu_i) \leq [K : \mathbb{F}_p(\alpha)].
\] (5)
Proof: We will show that if $v_1, \ldots, v_r \in M(K)$ with $\text{ord}_{v_i}(\alpha) > 0$ for all, then

$$\sum_{i=1}^{r} \text{ord}_{v_i}(\alpha) \deg(v_i) \leq [K : \mathbb{F}_p(\alpha)].$$

(5)

For notational convenience set $e_i = \text{ord}_{v_i}(\alpha)$ and $f_i = \deg(v_i)$.

Math 681, Wednesday, March 3 and Friday, March 5
Proof: We will show that if \(v_1, \ldots, v_r \in M(K) \) with \(\text{ord}_{v_i}(\alpha) > 0 \) for all, then
\[
\sum_{i=1}^{r} \text{ord}_{v_i}(\alpha) \deg(v_i) \leq [K : \mathbb{F}_p(\alpha)]. \tag{5}
\]

For notational convenience set \(e_i = \text{ord}_{v_i}(\alpha) \) and \(f_i = \deg(v_i) \). For each \(i = 1, \ldots, r \)
Proof: We will show that if \(\nu_1, \ldots, \nu_r \in M(K) \) with \(\text{ord}_{\nu_i}(\alpha) > 0 \) for all, then
\[
\sum_{i=1}^{r} \text{ord}_{\nu_i}(\alpha) \deg(\nu_i) \leq [K : \mathbb{F}_p(\alpha)]. \tag{5}
\]

For notational convenience set \(e_i = \text{ord}_{\nu_i}(\alpha) \) and \(f_i = \deg(\nu_i) \). For each \(i = 1, \ldots, r \) we use the Weak Approximation Theorem to prove the existence of \(\pi_i \in K \) with
Proof: We will show that if $v_1, \ldots, v_r \in M(K)$ with $\text{ord}_{v_i}(\alpha) > 0$ for all, then

$$
\sum_{i=1}^{r} \text{ord}_{v_i}(\alpha) \deg(v_i) \leq [K : \mathbb{F}_{p}(\alpha)]. \quad (5)
$$

For notational convenience set $e_i = \text{ord}_{v_i}(\alpha)$ and $f_i = \deg(v_i)$. For each $i = 1, \ldots, r$ we use the Weak Approximation Theorem to prove the existence of $\pi_i \in K$ with

$$
\text{ord}_{v_j}(\pi_i) =
$$
Proof: We will show that if $v_1, \ldots, v_r \in M(K)$ with $\text{ord}_{v_i}(\alpha) > 0$ for all, then

$$\sum_{i=1}^{r} \text{ord}_{v_i}(\alpha) \deg(v_i) \leq [K : \mathbb{F}_p(\alpha)]. \quad (5)$$

For notational convenience set $e_i = \text{ord}_{v_i}(\alpha)$ and $f_i = \deg(v_i)$. For each $i = 1, \ldots, r$ we use the Weak Approximation Theorem to prove the existence of $\pi_i \in K$ with

$$\text{ord}_{v_j}(\pi_i) = \begin{cases} 1 & \text{if } i = j, \\ \end{cases}$$
Proof: We will show that if \(v_1, \ldots, v_r \in M(K) \) with \(\text{ord}_{v_i}(\alpha) > 0 \) for all, then

\[
\sum_{i=1}^{r} \text{ord}_{v_i}(\alpha) \deg(v_i) \leq [K : \mathbb{F}_p(\alpha)]. \tag{5}
\]

For notational convenience set \(e_i = \text{ord}_{v_i}(\alpha) \) and \(f_i = \deg(v_i) \). For each \(i = 1, \ldots, r \) we use the Weak Approximation Theorem to prove the existence of \(\pi_i \in K \) with

\[
\text{ord}_{v_j}(\pi_i) = \begin{cases}
1 & \text{if } i = j, \\
0 & \text{otherwise.}
\end{cases}
\]
Proof: We will show that if \(v_1, \ldots, v_r \in M(K) \) with \(\text{ord}_{v_i}(\alpha) > 0 \) for all, then
\[
\sum_{i=1}^{r} \text{ord}_{v_i}(\alpha) \deg(v_i) \leq [K : \mathbb{F}_p(\alpha)].
\] (5)

For notational convenience set \(e_i = \text{ord}_{v_i}(\alpha) \) and \(f_i = \deg(v_i) \). For each \(i = 1, \ldots, r \) we use the Weak Approximation Theorem to prove the existence of \(\pi_i \in K \) with
\[
\text{ord}_{v_j}(\pi_i) = \begin{cases}
1 & \text{if } i = j, \\
0 & \text{otherwise.}
\end{cases}
\]

Next, for each \(i = 1, \ldots, r \) choose \(\beta_{i,1}, \ldots, \beta_{i,f_i} \in R_i \) with
Proof: We will show that if $\nu_1, \ldots, \nu_r \in M(K)$ with $\text{ord}_{\nu_i}(\alpha) > 0$ for all, then

$$\sum_{i=1}^{r} \text{ord}_{\nu_i}(\alpha) \deg(\nu_i) \leq [K : \mathbb{F}_p(\alpha)].$$

(5)

For notational convenience set $e_i = \text{ord}_{\nu_i}(\alpha)$ and $f_i = \deg(\nu_i)$. For each $i = 1, \ldots, r$ we use the Weak Approximation Theorem to prove the existence of $\pi_i \in K$ with

$$\text{ord}_{\nu_j}(\pi_i) = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{otherwise.} \end{cases}$$

Next, for each $i = 1, \ldots, r$ choose $\beta_{i,1}, \ldots, \beta_{i,f_i} \in R_i$ with

$$R_i/M_i = \{\beta_{i,j} + M_i : j = 1, \ldots, f_i\},$$
Proof: We will show that if $\nu_1, \ldots, \nu_r \in M(K)$ with $\text{ord}_{\nu_i}(\alpha) > 0$ for all, then
\[
\sum_{i=1}^{r} \text{ord}_{\nu_i}(\alpha) \deg(\nu_i) \leq [K : \mathbb{F}_p(\alpha)].
\] (5)

For notational convenience set $e_i = \text{ord}_{\nu_i}(\alpha)$ and $f_i = \deg(\nu_i)$. For each $i = 1, \ldots, r$ we use the Weak Approximation Theorem to prove the existence of $\pi_i \in K$ with
\[
\text{ord}_{\nu_j}(\pi_i) = \begin{cases}
1 & \text{if } i = j, \\
0 & \text{otherwise.}
\end{cases}
\]

Next, for each $i = 1, \ldots, r$ choose $\beta_{i,1}, \ldots, \beta_{i,f_i} \in R_i$ with
\[
R_i/\mathcal{M}_i = \{\beta_{i,j} + \mathcal{M}_i : j = 1, \ldots, f_i\},
\]
where R_i is the valuation ring for ν_i with maximal ideal \mathcal{M}_i.

Math 681, Wednesday, March 3 and Friday, March 5
By another application of the Weak Approximation Theorem
By another application of the Weak Approximation Theorem there are \(\alpha_{i,j} \in K, \ 1 \leq i \leq r, \ 1 \leq j \leq f_i \) satisfying

\[
\text{ord}_v \left(\beta_{i,j} - \alpha_{i,j} \right) > 0 \quad \text{and} \quad \text{ord}_v \left(\alpha_{i,j} \right) \geq e_i \quad \text{for all} \ l \neq i.
\]

We claim that \(\{ \pi_n^i \alpha_{i,j} : 1 \leq i \leq r, \ 1 \leq j \leq f_i, \ 0 \leq n \leq e_i \} \) is linearly independent over \(F_p(\alpha) \).

Note that (5) follows directly from this claim.
By another application of the Weak Approximation Theorem there are \(\alpha_{i,j} \in K \), \(1 \leq i \leq r \), \(1 \leq j \leq f_i \) satisfying \(\text{ord}_{v_i}(\beta_{i,j} - \alpha_{i,j}) > 0 \)
By another application of the Weak Approximation Theorem there are
\(\alpha_{i,j} \in K, \ 1 \leq i \leq r, \ 1 \leq j \leq f_i \) satisfying
\(\text{ord}_{v_i}(\beta_{i,j} - \alpha_{i,j}) > 0 \) and
\(\text{ord}_{v_l}(\alpha_{i,j}) \geq e_l \) for all \(l \neq i \).
By another application of the Weak Approximation Theorem there are \(\alpha_{i,j} \in K, \ 1 \leq i \leq r, \ 1 \leq j \leq f_i \) satisfying \(\text{ord}_{v_i}(\beta_{i,j} - \alpha_{i,j}) > 0 \) and \(\text{ord}_{v_l}(\alpha_{i,j}) \geq e_l \) for all \(l \neq i \).

We claim that
By another application of the Weak Approximation Theorem there are
\(\alpha_{i,j} \in K, \ 1 \leq i \leq r, \ 1 \leq j \leq f_i \) satisfying \(\text{ord}_{v_i}(\beta_{i,j} - \alpha_{i,j}) > 0 \) and
\(\text{ord}_{v_l}(\alpha_{i,j}) \geq e_l \) for all \(l \neq i \).

We claim that

\[
\{ \pi_i^n \alpha_{i,j} : 1 \leq i \leq r, \ 1 \leq j \leq f_i, \ 0 \leq n \leq e_i \}
\]

is linearly independent over \(\mathbb{F}_p(\alpha) \).
By another application of the Weak Approximation Theorem there are $\alpha_{i,j} \in K$, $1 \leq i \leq r$, $1 \leq j \leq f_i$ satisfying $\text{ord}_{v_i}(\beta_{i,j} - \alpha_{i,j}) > 0$ and $\text{ord}_{v_l}(\alpha_{i,j}) \geq e_l$ for all $l \neq i$.

We claim that

$$\left\{ \pi_i^n \alpha_{i,j} : 1 \leq i \leq r, \ 1 \leq j \leq f_i, \ 0 \leq n \leq e_i \right\}$$

is linearly independent over $\mathbb{F}_p(\alpha)$. Note that (5) follows directly from this claim.
Suppose we have a non-trivial linear combination

\[
\sum_{i=1}^{r} \sum_{j=1}^{f_i} \sum_{n=1}^{e_i-1} P_{i,j,n}(\alpha)\pi_i^n\alpha_{i,j} = 0
\]
Suppose we have a non-trivial linear combination

\[
\sum_{i=1}^{r} \sum_{j=1}^{f_i} \sum_{n=1}^{e_i-1} P_{i,j,n}(\alpha) \pi^n_i \alpha_{i,j} = 0
\]

where \(P_{i,j,n}(\alpha) \in \mathbb{F}_p[\alpha] \) for all \(i, j, \) and \(n \).
Suppose we have a non-trivial linear combination

\[
\sum_{i=1}^{r} \sum_{j=1}^{f_i} \sum_{n=1}^{e_i-1} P_{i,j,n}(\alpha) \pi_i^n \alpha_{i,j} = 0
\]

where \(P_{i,j,n}(\alpha) \in \mathbb{F}_p[\alpha] \) for all \(i, j, \) and \(n \). As before, we may assume without loss of generality that \(\alpha \) doesn’t divide all the \(P_{i,j,n}(\alpha) \).
Suppose we have a non-trivial linear combination

\[\sum_{i=1}^{r} \sum_{j=1}^{f_i} \sum_{n=1}^{e_i-1} P_{i,j,n}(\alpha) \pi_i^n \alpha_{i,j} = 0 \]

where \(P_{i,j,n}(\alpha) \in \mathbb{F}_p[\alpha] \) for all \(i, j, \) and \(n \). As before, we may assume without loss of generality that \(\alpha \) doesn’t divide all the \(P_{i,j,n}(\alpha) \). We then have indices \(l \in \{1, \ldots, r\} \) and \(m \in \{1, \ldots, e_l - 1\} \) such that \(\alpha | P_{l,j,n}(\alpha) \)
Suppose we have a non-trivial linear combination

\[
\sum_{i=1}^{r} \sum_{j=1}^{f_i} \sum_{n=1}^{e_i-1} P_{i,j,n}(\alpha) \pi_i^n \alpha_{i,j} = 0
\]

where \(P_{i,j,n}(\alpha) \in \mathbb{F}_p[\alpha] \) for all \(i, j, \) and \(n \). As before, we may assume without loss of generality that \(\alpha \) doesn’t divide all the \(P_{i,j,n}(\alpha) \). We then have indices \(l \in \{1, \ldots, r\} \) and \(m \in \{1, \ldots, e_l - 1\} \) such that \(\alpha | P_{l,j,n}(\alpha) \) for all \(n < m \) and any \(j \in \{1, \ldots, f_l\} \).
Suppose we have a non-trivial linear combination

\[
\sum_{i=1}^{r} \sum_{j=1}^{f_i} \sum_{n=1}^{e_i-1} P_{i,j,n}(\alpha) \pi_i^n \alpha_{i,j} = 0
\]

where \(P_{i,j,n}(\alpha) \in \mathbb{F}_p[\alpha] \) for all \(i, j, \) and \(n \). As before, we may assume without loss of generality that \(\alpha \) doesn’t divide all the \(P_{i,j,n}(\alpha) \). We then have indices \(l \in \{1, \ldots, r\} \) and \(m \in \{1, \ldots, e_l - 1\} \) such that \(\alpha | P_{l,j,n}(\alpha) \) for all \(n < m \) and any \(j \in \{1, \ldots, f_l\} \) and \(\alpha \nmid P_{l,j,m}(\alpha) \) for some \(j \in \{1, \ldots, f_l\} \).
Suppose we have a non-trivial linear combination

\[
\sum_{i=1}^{r} \sum_{j=1}^{f_i} \sum_{n=1}^{e_i-1} P_{i,j,n}(\alpha) \pi_i^n \alpha_{i,j} = 0
\]

where \(P_{i,j,n}(\alpha) \in \mathbb{F}_p[\alpha] \) for all \(i, j, \) and \(n \). As before, we may assume without loss of generality that \(\alpha \) doesn’t divide all the \(P_{i,j,n}(\alpha) \). We then have indices \(l \in \{1, \ldots, r\} \) and \(m \in \{1, \ldots, e_l - 1\} \) such that \(\alpha | P_{l,j,n}(\alpha) \) for all \(n < m \) and any \(j \in \{1, \ldots, f_l\} \) and \(\alpha \nmid P_{l,j,m}(\alpha) \) for some \(j \in \{1, \ldots, f_l\} \).

Multiplying our linear equation through by \(\pi_l^{-m} \) yields
Suppose we have a non-trivial linear combination

\[
\sum_{i=1}^{r} \sum_{j=1}^{f_i} \sum_{n=1}^{e_i-1} P_{i,j,n}(\alpha) \pi_i^n \alpha_{i,j} = 0
\]

where \(P_{i,j,n}(\alpha) \in \mathbb{F}_p[\alpha] \) for all \(i, j, \) and \(n \). As before, we may assume without loss of generality that \(\alpha \) doesn’t divide all the \(P_{i,j,n}(\alpha) \). We then have indices \(l \in \{1, \ldots, r\} \) and \(m \in \{1, \ldots, e_l - 1\} \) such that \(\alpha | P_{l,j,n}(\alpha) \) for all \(n < m \) and any \(j \in \{1, \ldots, f_l\} \) and \(\alpha \nmid P_{l,j,m}(\alpha) \) for some \(j \in \{1, \ldots, f_l\} \).

Multiplying our linear equation through by \(\pi_l^{-m} \) yields

\[
\sum_{i=1}^{r} \sum_{j=1}^{f_i} \sum_{n=0}^{e_i-1} P_{i,j,n}(\alpha) \pi_i^n \pi_l^{-m} \alpha_{i,j} = 0.
\]
Suppose we have a non-trivial linear combination

\[
\sum_{i=1}^{r} \sum_{j=1}^{f_i} \sum_{n=1}^{e_i-1} P_{i,j,n}(\alpha) \pi_i^n \alpha_{i,j} = 0
\]

where \(P_{i,j,n}(\alpha) \in \mathbb{F}_p[\alpha] \) for all \(i, j, \) and \(n \). As before, we may assume without loss of generality that \(\alpha \) doesn’t divide all the \(P_{i,j,n}(\alpha) \). We then have indices \(l \in \{1, \ldots, r\} \) and \(m \in \{1, \ldots, e_l - 1\} \) such that \(\alpha | P_{l,j,n}(\alpha) \) for all \(n < m \) and any \(j \in \{1, \ldots, f_l\} \) and \(\alpha \nmid P_{l,j,m}(\alpha) \) for some \(j \in \{1, \ldots, f_l\} \).

Multiplying our linear equation through by \(\pi_l^{-m} \) yields

\[
\sum_{i=1}^{r} \sum_{j=1}^{f_i} \sum_{n=0}^{e_i-1} P_{i,j,n}(\alpha) \pi_i^n \pi_l^{-m} \alpha_{i,j} = 0.
\]

We note that the summands above are in \(\mathcal{M}_l \) for all \(i \neq l \).
Suppose we have a non-trivial linear combination

\[
\sum_{i=1}^{r} \sum_{j=1}^{f_i} \sum_{n=1}^{e_i-1} P_{i,j,n}(\alpha) \pi_i^n \alpha_{i,j} = 0
\]

where \(P_{i,j,n}(\alpha) \in \mathbb{F}_p[\alpha] \) for all \(i, j, \) and \(n \). As before, we may assume without loss of generality that \(\alpha \) doesn’t divide all the \(P_{i,j,n}(\alpha) \). We then have indices \(l \in \{1, \ldots, r\} \) and \(m \in \{1, \ldots, e_l - 1\} \) such that \(\alpha | P_{l,j,n}(\alpha) \) for all \(n < m \) and any \(j \in \{1, \ldots, f_l\} \) and \(\alpha \nmid P_{l,j,m}(\alpha) \) for some \(j \in \{1, \ldots, f_l\} \).

Multiplying our linear equation through by \(\pi_l^{-m} \) yields

\[
\sum_{i=1}^{r} \sum_{j=1}^{f_i} \sum_{n=0}^{e_i-1} P_{i,j,n}(\alpha) \pi_i^n \pi_l^{-m} \alpha_{i,j} = 0.
\]

We note that the summands above are in \(\mathcal{M}_l \) for all \(i \neq l \). Further, \(P_{l,j,n}(\alpha) \pi_l^{n-m} \alpha_{i,j} \in \mathcal{M}_l \) for all \(n \neq m \).
Suppose we have a non-trivial linear combination

$$\sum_{i=1}^{r} \sum_{j=1}^{f_i} \sum_{n=1}^{e_i-1} P_{i,j,n}(\alpha) \pi_i^n \alpha_{i,j} = 0$$

where $P_{i,j,n}(\alpha) \in \mathbb{F}_p[\alpha]$ for all i, j, and n. As before, we may assume without loss of generality that α doesn’t divide all the $P_{i,j,n}(\alpha)$. We then have indices $l \in \{1, \ldots, r\}$ and $m \in \{1, \ldots, e_l - 1\}$ such that $\alpha | P_{l,j,n}(\alpha)$ for all $n < m$ and any $j \in \{1, \ldots, f_l\}$ and $\alpha \nmid P_{l,j,m}(\alpha)$ for some $j \in \{1, \ldots, f_l\}$.

Multiplying our linear equation through by π_l^{-m} yields

$$\sum_{i=1}^{r} \sum_{j=1}^{f_i} \sum_{n=0}^{e_i-1} P_{i,j,n}(\alpha) \pi_i^n \pi_l^{-m} \alpha_{i,j} = 0.$$

We note that the summands above are in \mathcal{M}_l for all $i \neq l$. Further, $P_{l,j,n}(\alpha) \pi_l^{n-m} \alpha_{l,j} \in \mathcal{M}_l$ for all $n \neq m$. Hence we have ...
\[\sum_{j=1}^{f_i} P_{l,j,m}(\alpha) \alpha_{l,j} \in \mathcal{M}_l. \]
\[
\sum_{j=1}^{f_i} P_{l,j,m}(\alpha) \alpha_{l,j} \in \mathcal{M}_l.
\]

But not all \(P_{l,j,m}(\alpha) \in \mathcal{M}_l \) by construction,
$$\sum_{j=1}^{f_i} P_{l,j,m}(\alpha) \alpha_{l,j} \in \mathcal{M}_l.$$

But not all $P_{l,j,m}(\alpha) \in \mathcal{M}_l$ by construction, so this yields a non-trivial linear combination
\[\sum_{j=1}^{f_l} P_{l,j,m}(\alpha)\alpha_{l,j} \in \mathcal{M}_l. \]

But not all \(P_{l,j,m}(\alpha) \in \mathcal{M}_l \) by construction, so this yields a non-trivial linear combination (note \(P_{l,j,m}(\alpha) + \mathcal{M}_l \in \mathbb{F}_p \))
\[
\sum_{j=1}^{f_l} P_{l,j,m}(\alpha)\alpha_{l,j} \in M_l.
\]

But not all \(P_{l,j,m}(\alpha) \in M_l \) by construction, so this yields a non-trivial linear combination (note \(P_{l,j,m}(\alpha) + M_l \in \mathbb{F}_p \)) modulo \(M_l \) for \(\alpha_{l,1}, \ldots, \alpha_{l,f_l} \)
\[\sum_{j=1}^{f_i} P_{l,j,m}(\alpha)\alpha_{l,j} \in \mathcal{M}_l. \]

But not all \(P_{l,j,m}(\alpha) \in \mathcal{M}_l \) by construction, so this yields a non-trivial linear combination (note \(P_{l,j,m}(\alpha) + \mathcal{M}_l \in \mathbb{F}_p \)) modulo \(\mathcal{M}_l \) for \(\alpha_{l,1}, \ldots, \alpha_{l,f_i} \) which were supposed to be linearly independent over \(\mathcal{M}_l \).
\[\sum_{j=1}^{f_l} P_{l,j,m}(\alpha) \alpha_{l,j} \in \mathcal{M}_l. \]

But not all \(P_{l,j,m}(\alpha) \in \mathcal{M}_l \) by construction, so this yields a non-trivial linear combination (note \(P_{l,j,m}(\alpha) + \mathcal{M}_l \in \mathbb{F}_p \)) modulo \(\mathcal{M}_l \) for \(\alpha_{l,1}, \ldots, \alpha_{l,f_l} \) which were supposed to be linearly independent over \(\mathcal{M}_l \). This proves our claim above,
\[
\sum_{j=1}^{f_i} P_{l,j,m}(\alpha) \alpha_{l,j} \in \mathcal{M}_l.
\]

But not all \(P_{l,j,m}(\alpha) \in \mathcal{M}_l \) by construction, so this yields a non-trivial linear combination (note \(P_{l,j,m}(\alpha) + \mathcal{M}_l \in \mathbb{F}_p \)) modulo \(\mathcal{M}_l \) for \(\alpha_{l,1}, \ldots, \alpha_{l,f_i} \) which were supposed to be linearly independent over \(\mathcal{M}_l \). This proves our claim above, whence (5).
\[
\sum_{j=1}^{f_i} P_{l,j,m}(\alpha) \alpha_{l,j} \in \mathcal{M}_l.
\]

But not all \(P_{l,j,m}(\alpha) \in \mathcal{M}_l \) by construction, so this yields a non-trivial linear combination (note \(P_{l,j,m}(\alpha) + \mathcal{M}_l \in \mathbb{F}_p \)) modulo \(\mathcal{M}_l \) for \(\alpha_{l,1}, \ldots, \alpha_{l,f_i} \) which were supposed to be linearly independent over \(\mathcal{M}_l \). This proves our claim above, whence (5).

Via (5) we immediately see that \(\deg\left(\text{div}(\alpha)^+ \right) \leq [K : \mathbb{F}_p(\alpha)] \).
\[\sum_{j=1}^{f_i} P_{l,j,m}(\alpha)\alpha_{l,j} \in \mathcal{M}_l. \]

But not all \(P_{l,j,m}(\alpha) \in \mathcal{M}_l \) by construction, so this yields a non-trivial linear combination (note \(P_{l,j,m}(\alpha) + \mathcal{M}_l \in \mathbb{F}_p \)) modulo \(\mathcal{M}_l \) for \(\alpha_{l,1}, \ldots, \alpha_{l,f_l} \) which were supposed to be linearly independent over \(\mathcal{M}_l \). This proves our claim above, whence (5).

Via (5) we immediately see that \(\deg \left(\text{div}(\alpha^+) \right) \leq [K : \mathbb{F}_p(\alpha)] \). Clearly \(\text{div}(\alpha^-) = \text{div}(\alpha^{-1})^+ \).
\[
\sum_{j=1}^{f_i} P_{l,j,m}(\alpha) \alpha_{l,j} \in \mathcal{M}_l.
\]

But not all \(P_{l,j,m}(\alpha) \in \mathcal{M}_l \) by construction, so this yields a non-trivial linear combination (note \(P_{l,j,m}(\alpha) + \mathcal{M}_l \in \mathbb{F}_p \)) modulo \(\mathcal{M}_l \) for \(\alpha_{l,1}, \ldots, \alpha_{l,f_i} \) which were supposed to be linearly independent over \(\mathcal{M}_l \). This proves our claim above, whence (5).

Via (5) we immediately see that \(\deg \left(\div(\alpha)^+ \right) \leq [K : \mathbb{F}_p(\alpha)] \). Clearly \(\div(\alpha)^- = \div(\alpha^{-1})^+ \). Since \(\mathbb{F}_p(\alpha) = \mathbb{F}_p(\alpha^{-1}) \),

Math 681, Wednesday, March 3 and Friday, March 5
\[\sum_{j=1}^{f_l} P_{l,j,m}(\alpha) \alpha_{l,j} \in \mathcal{M}_l. \]

But not all \(P_{l,j,m}(\alpha) \in \mathcal{M}_l \) by construction, so this yields a non-trivial linear combination (note \(P_{l,j,m}(\alpha) + \mathcal{M}_l \in \mathbb{F}_p \)) modulo \(\mathcal{M}_l \) for \(\alpha_{l,1}, \ldots, \alpha_{l,f_l} \) which were supposed to be linearly independent over \(\mathcal{M}_l \). This proves our claim above, whence (5).

Via (5) we immediately see that \(\deg \left(\text{div}(\alpha)^+ \right) \leq [K : \mathbb{F}_p(\alpha)] \). Clearly \(\text{div}(\alpha)^- = \text{div}(\alpha^{-1})^+ \). Since \(\mathbb{F}_p(\alpha) = \mathbb{F}_p(\alpha^{-1}) \), the Proposition follows.
\[
\sum_{j=1}^{f_i} P_{l,j,m}(\alpha)\alpha_{l,j} \in \mathcal{M}_l.
\]

But not all \(P_{l,j,m}(\alpha) \in \mathcal{M}_l \) by construction, so this yields a non-trivial linear combination (note \(P_{l,j,m}(\alpha) + \mathcal{M}_l \in \mathbb{F}_p \)) modulo \(\mathcal{M}_l \) for \(\alpha_{l,1}, \ldots, \alpha_{l,f_i} \) which were supposed to be linearly independent over \(\mathcal{M}_l \). This proves our claim above, whence (5).

Via (5) we immediately see that \(\deg(\text{div}(\alpha)^+) \leq [K : \mathbb{F}_p(\alpha)] \). Clearly \(\text{div}(\alpha)^- = \text{div}(\alpha^{-1})^+ \). Since \(\mathbb{F}_p(\alpha) = \mathbb{F}_p(\alpha^{-1}) \), the Proposition follows.

The Proposition tells us that we do, indeed, have the analog of principal fractional ideals.
$$\sum_{j=1}^{f_i} P_{l,j,m}(\alpha)\alpha_{l,j} \in \mathcal{M}_l.$$

But not all $P_{l,j,m}(\alpha) \in \mathcal{M}_l$ by construction, so this yields a non-trivial linear combination (note $P_{l,j,m}(\alpha) + \mathcal{M}_l \in \mathbb{F}_p$) modulo \mathcal{M}_l for $\alpha_{l,1}, \ldots, \alpha_{l,f_i}$ which were supposed to be linearly independent over \mathcal{M}_l. This proves our claim above, whence (5).

Via (5) we immediately see that $\deg \left(\text{div}(\alpha)^+ \right) \leq [K : \mathbb{F}_p(\alpha)]$. Clearly $\text{div}(\alpha)^- = \text{div}(\alpha^{-1})^+$. Since $\mathbb{F}_p(\alpha) = \mathbb{F}_p(\alpha^{-1})$, the Proposition follows.

The Proposition tells us that we do, indeed, have the analog of principal fractional ideals.

One readily verifies that the principal divisors are a subgroup of $\text{Div}(K)$,
\[\sum_{j=1}^{f_i} P_{l,j,m}(\alpha) \alpha_{l,j} \in \mathcal{M}_l. \]

But not all \(P_{l,j,m}(\alpha) \in \mathcal{M}_l \) by construction, so this yields a non-trivial linear combination (note \(P_{l,j,m}(\alpha) + \mathcal{M}_l \in \mathbb{F}_p \)) modulo \(\mathcal{M}_l \) for \(\alpha_{l,1}, \ldots, \alpha_{l,f_i} \) which were supposed to be linearly independent over \(\mathcal{M}_l \).

This proves our claim above, whence (5).

Via (5) we immediately see that \(\deg (\text{div}(\alpha)^+) \leq [K : \mathbb{F}_p(\alpha)] \). Clearly \(\text{div}(\alpha)^- = \text{div}(\alpha^{-1})^+ \). Since \(\mathbb{F}_p(\alpha) = \mathbb{F}_p(\alpha^{-1}) \), the Proposition follows.

The Proposition tells us that we do, indeed, have the analog of principal fractional ideals.

One readily verifies that the principal divisors are a subgroup of \(\text{Div}(K) \), whence we have a factor group and an analog of the class number
\[\sum_{j=1}^{f_i} P_{l,j,m}(\alpha)\alpha_{l,j} \in \mathcal{M}_l. \]

But not all \(P_{l,j,m}(\alpha) \in \mathcal{M}_l \) by construction, so this yields a non-trivial linear combination (note \(P_{l,j,m}(\alpha) + \mathcal{M}_l \in \mathbb{F}_p \)) modulo \(\mathcal{M}_l \) for \(\alpha_{l,1}, \ldots, \alpha_{l,f_i} \) which were supposed to be linearly independent over \(\mathcal{M}_l \). This proves our claim above, whence (5).

Via (5) we immediately see that \(\deg \left(\text{div}(\alpha)^+ \right) \leq [K : \mathbb{F}_p(\alpha)] \). Clearly \(\text{div}(\alpha^-) = \text{div}(\alpha^{-1})^+ \). Since \(\mathbb{F}_p(\alpha) = \mathbb{F}_p(\alpha^{-1}) \), the Proposition follows.

The Proposition tells us that we do, indeed, have the analog of principal fractional ideals.

One readily verifies that the principal divisors are a subgroup of \(\text{Div}(K) \), whence we have a factor group and an analog of the class number (which we haven’t yet proven to be finite).