The Adele Ring

We adopt the standard notation of \(\mathbb{Q} \) for the field of rational numbers and \(\mathbb{F}_p \) for the finite field with \(p \) elements. (We will assume \(p \) is a prime.) Here \(K \) will denote either a number field (finite algebraic extension of \(\mathbb{Q} \)) or function field over a finite field (finite algebraic extension of \(\mathbb{F}_p(T) \) where \(T \) is transcendental over \(\mathbb{F}_p \)). We will assume some familiarity with the notion of the places of such a field; the set of all places of \(K \) will be denoted by \(M(K) \). The place of \(\mathbb{Q} \) corresponding to the usual Euclidean absolute value will be denoted \(\infty \).

For any place \(v \in M(K) \) we can construct the topological completion \(K_v \) of \(K \) via the usual Cauchy sequence stuff. If \(v \mid \infty \) then \(K_v \) is either the field of real numbers \(\mathbb{R} \) or the field of complex numbers \(\mathbb{C} \). When \(p \in M(\mathbb{Q}) \) is a finite place of \(\mathbb{Q} \) (identified with a positive prime in the standard manner) then \(\mathbb{Q}_p \) is the field of \(p \)-adic numbers with subring \(\mathbb{Z}_p \), the \(p \)-adic integers. Set-theoretically, \(\mathbb{Z}_p \) consists of those \(\alpha \in \mathbb{Q}_p \) with absolute value \(|\alpha|_p \leq 1 \), where \(| \cdot |_p \) denotes the \(p \)-adic absolute value on \(\mathbb{Q} \) extended to \(\mathbb{Q}_p \). (Note that the particular normalization, i.e., representative absolute value of the place chosen, is not an issue here.) In general, for any finite place \(v \in M(K) \), meaning \(v \nmid \infty \), we have the maximal compact subring \(\mathfrak{O}_v \subset K_v \) consisting of those elements \(\alpha \in K_v \) with \(|\alpha|_v \leq 1 \).

Suppose \(P \subset M(K) \) is a finite set of places containing all the infinite places of \(K \). Set

\[
K_\mathfrak{a}(P) = \prod_{v \in P} K_v \times \prod_{v \notin P} \mathfrak{O}_v.
\]

Exercise 1: Show that \(K_\mathfrak{a}(P) \) is a ring when we define addition and multiplication component-wise, and this makes \(K_\mathfrak{a}(P) \) a topological ring via the topologies on the \(K_v \) induced by the absolute values (the choices in the various places here are irrelevant by the definition of place).

Lemma 1: \(K_v \) is always locally compact and \(\mathfrak{O}_v \) is compact when \(v \nmid \infty \). Therefore \(K_\mathfrak{a}(P) \) is locally compact with the usual product topology for any finite subset \(P \subset M(K) \) containing all the infinite places of \(K \).

Proof: If \(v \) is an infinite place, then \(K_v \) is \(\mathbb{R} \) or \(\mathbb{C} \), both of which are certainly locally compact (the closure of an open ball works nicely). If \(v \mid \infty \) the local compactness follows immediately from \(\mathfrak{O}_v \) being compact. Now \(\mathfrak{O}_v \) is clearly complete, since any cauchy sequence in \(\mathfrak{O}_v \subset K_v \) converges by the definition of \(K_v \) and must converge to a point in \(\mathfrak{O}_v \) by the ultra-metric inequality. Certainly \(\mathfrak{O}_v \) is totally bounded by its very definition. Thus \(\mathfrak{O}_v \) is compact since it’s a complete and totally bounded metric space.

Definition: The adele ring \(K_\mathfrak{a} \) is defined to be the union of all \(K_\mathfrak{a}(P) \), where the union is taken over all finite subsets \(P \subset M(K) \) where \(P \) contains all finite places of \(K \).

Exercise 2: Show that set-theoretically \(K_\mathfrak{a} \) consists of ordered tuples \((\alpha_v)_{v \in M(K)} \) where \(\alpha_v \in K_v \) for all \(v \in M(K) \) and \(\alpha_v \in \mathfrak{O}_v \) for all but finitely many \(v \in M(K) \). Prove that \(K_\mathfrak{a} \) is a ring with subrings \(K_\mathfrak{a}(P) \) for all finite subsets \(P \subset M(K) \) containing all infinite places of \(K \).

We put a topology on \(K_\mathfrak{a} \) (sometimes called the restricted direct product topology) by prescribing that each \(K_\mathfrak{a}(P) \) is an open subring. To see what this means, it suffices (via the additive ring structure) to describe open neighborhoods of the origin. Any such neighborhood is of the form \((U_v)_{v \in M(K)} \) where \(U_v \subset K_v \) is a neighborhood of 0 for all places and \(U_v = \mathfrak{O}_v \) for all but finitely many places.

Exercise 3: View \(K \) as a subset of the adele ring via the diagonal embedding or canonical injection: \(\phi(\alpha) = (\alpha_v)_{v \in M(K)} \) where \(\alpha_v = \alpha \) for all places. Show that this does, indeed, take \(K \) to a subring of \(K_\mathfrak{a} \).
Lemma 2: Suppose p is a prime and set $Q^{(p)}$ to be those $\alpha \in \mathbb{Q}$ where $|\alpha|_q \leq 1$ for all primes $q \neq p$. Then $Q_p = Q^{(p)} + \mathbb{Z}_p$ and $Q^{(p)} \cap \mathbb{Z}_p = \mathbb{Z}$.

Lemma 3: Set

$$Q^{(\infty)} = \mathbb{R} \times \prod_{p \text{ prime}} \mathbb{Z}_p.$$

Then $Q_\mathbb{A} = Q^{(\infty)} + \mathbb{Q}$ and $Q^{(\infty)} \cap \mathbb{Q} = \mathbb{Z}$, where we have identified $\mathbb{Z} \subset \mathbb{Q} \subset Q_\mathbb{A}$ via the embedding above.

Proposition 1: Via the diagonal embedding in Exercise 3 above, the field \mathbb{Q} is a discrete subset of the adele ring and the quotient $Q_\mathbb{A}/\mathbb{Q}$ is compact.

Proof: First, $Q^{(\infty)}$ is clearly an open subset of $Q_\mathbb{A}$. Also, \mathbb{Z} is a discrete subset of $Q^{(\infty)}$ since its projection onto the factor \mathbb{R} is discrete. Certainly

$$Q^{(\infty)} = [-1/2, 1/2] \times \prod_{p \text{ prime}} \mathbb{Z}_p + \mathbb{Z}$$

so that

$$Q_\mathbb{A} = [-1/2, 1/2] \times \prod_{p \text{ prime}} \mathbb{Z}_p + \mathbb{Q}.$$

Since the first summand here is compact, this completes the proof.

We now turn to the case $K = \mathbb{F}_p(T)$.

Exercise 4: For every place $v \in M(K)$ set $K^{(v)}$ to be the subset of $\alpha \in K$ where $|\alpha|_w \leq 1$ for all places $w \neq v$. Prove that $K_v = K^{(v)} + \mathcal{O}_v$ and $K^{(v)} \cap \mathcal{O}_v = \mathbb{F}_p$.

Exercise 5: Prove that $K_\mathbb{A} = K_\mathbb{A}(\emptyset) + K$ and $K_\mathbb{A}(\emptyset) \cap K = \mathbb{F}_p$, where we have identified $\mathbb{F}_p \subset K \subset K_\mathbb{A}$ via the embedding above.

Together, these two exercises suffice to prove the following.

Proposition 2: Via the diagonal embedding in Exercise 3 above, $\mathbb{F}_p(T)$ is a discrete subset of its adele ring and the quotient is compact.