**1**-
G.S. Ammar, W.B. Gragg and L. Reichel,
*Constructing a unitary Hessenberg matrix from spectral data,*in*Numerical Linear Algebra, Digital Signal Processing and Parallel Algorithms*, eds. G.H. Golub and P. Van Dooren, Springer, New York, 1991, pp. 385--396. **2**-
Å . Björck and V. Pereyra,
Solution of Vandermonde systems of equations,
*Math. Comp.*24:893--903 (1970). **3**-
S. Elhay, G.H. Golub and J. Kautsky,
Updating and downdating of orthogonal polynomials with data fitting
applications,
*SIAM J. Matrix Anal. Appl.*12:327--353 (1991). **4**-
G.H. Golub and J.H. Welsch, Calculation of Gauss quadrature rules,
*Math. Comp.*23:221--230 (1969). **5**-
W.B. Gragg, The QR algorithm for unitary Hessenberg matrices,
*J. Comput. Appl. Math.*16:1--8 (1986). **6**-
W.B. Gragg and W.J. Harrod, The numerically stable reconstruction of Jacobi
matrices from spectral data,
*Numer. Math.*44:317--335 (1984). **7**-
U. Grenander and G. Szego,
*Toeplitz Forms and Their Applications*, Chelsea, New York, 1984. **8**-
L. Reichel, Fast QR decomposition of Vandermonde-like matrices and polynomial
least squares approximation,
*SIAM J. Matrix Anal. Appl.*12:552--564 (1991). **9**- L. Reichel, Construction of polynomials that are orthogonal with respect to a discrete bilinear form, Report ICM-9112-22, Institute for Computational Mathematics, Kent State University, Kent, OH, 1991.
**10**-
L. Reichel, G.S. Ammar and W.B. Gragg,
Discrete least squares approximation by trigonometric polynomials,
*Math. Comp.*57:273-289 (1991). **11**-
L.B. Scott and L.R. Scott, Efficient methods for data smoothing,
*SIAM J. Numer. Anal.*26:681--692 (1989).

Tue Feb 14 12:51:53 CST 1995