next up previous
Next: About this document Up: Downdating of Szego Previous: Computed examples

References

1
G.S. Ammar, W.B. Gragg and L. Reichel, Constructing a unitary Hessenberg matrix from spectral data, in Numerical Linear Algebra, Digital Signal Processing and Parallel Algorithms, eds. G.H. Golub and P. Van Dooren, Springer, New York, 1991, pp. 385--396.
2
Å . Björck and V. Pereyra, Solution of Vandermonde systems of equations, Math. Comp. 24:893--903 (1970).
3
S. Elhay, G.H. Golub and J. Kautsky, Updating and downdating of orthogonal polynomials with data fitting applications, SIAM J. Matrix Anal. Appl. 12:327--353 (1991).
4
G.H. Golub and J.H. Welsch, Calculation of Gauss quadrature rules, Math. Comp. 23:221--230 (1969).
5
W.B. Gragg, The QR algorithm for unitary Hessenberg matrices, J. Comput. Appl. Math. 16:1--8 (1986).
6
W.B. Gragg and W.J. Harrod, The numerically stable reconstruction of Jacobi matrices from spectral data, Numer. Math. 44:317--335 (1984).
7
U. Grenander and G. Szego, Toeplitz Forms and Their Applications, Chelsea, New York, 1984.
8
L. Reichel, Fast QR decomposition of Vandermonde-like matrices and polynomial least squares approximation, SIAM J. Matrix Anal. Appl. 12:552--564 (1991).
9
L. Reichel, Construction of polynomials that are orthogonal with respect to a discrete bilinear form, Report ICM-9112-22, Institute for Computational Mathematics, Kent State University, Kent, OH, 1991.
10
L. Reichel, G.S. Ammar and W.B. Gragg, Discrete least squares approximation by trigonometric polynomials, Math. Comp. 57:273-289 (1991).
11
L.B. Scott and L.R. Scott, Efficient methods for data smoothing, SIAM J. Numer. Anal. 26:681--692 (1989).


Greg Ammar
Tue Feb 14 12:51:53 CST 1995