1. (15 pts.) Determine the solution $y(x)$ of the initial value problem $y' = y^2e^{3x}$, $y(0) = 1$.

2. (15 pts.) Find the solution $y(x)$ of the initial value problem $(x - 1)y' + 2y = (x - 1)$, $y(2) = 1$.
3. (14 pts. each) Find the general solution of each of the following differential equations.

(a) \(4xy^{1/2} + x^2 - 2x^{-1/2}y^{1/2} + \left(2y + x^2y^{-1/2} - 2x^{1/2}y^{-1/2}\right) \frac{dy}{dx} = 0.\)

(b) \(xy \frac{dy}{dx} = x^2 + 3y^2.\)
4. (14 pts.) Use the method of undetermined coefficients to find the general solution $y(x)$ of

$$y^{(4)} + 2y'' - 8y = x^2.$$

5. (14 pts.) Use the variation of parameters method to find the general solution $y(x)$ of

$$y'' + 4y = \frac{1}{\cos 2x}.$$
6. (20 pts.) Use Laplace transforms to find the solution \(x(t) \) of the initial value problem

\[
x'' + 2x' + 5x = e^t, \quad x(0) = 0, \quad x'(0) = 1.
\]
7. (14 pts.) Use Euler’s method with a step size of $h = 1/2$ to approximate $y(3)$, where $y(x)$ is the solution of the initial value problem $y' = xy^2$, $y(2) = 1$.

8. (20 pts.) Find the general solution of the following system of differential equations. ($x = x(t)$ and $y = y(t)$ are both functions of the independent variable t.)

$$x' = 3x - 2y, \quad y' = 3x - 4y.$$
9. (20 pts.) Let \(x(t) \) be the position of the mass in a mass-spring-dashpot system (a mass-spring system with damping) to which a periodic external force is applied. Assume that \(x(t) \) satisfies the nonhomogeneous linear differential equation
\[
x'' + 4x' + 5x = 4 \sin(3t).
\]

(a) Find the general solution of this differential equation.

(b) As \(t \to \infty \), the solution tends to a sinusoid \(x_p(t) = C \cos(\omega t - \alpha) \). Determine \(C \) (the amplitude of this sinusoid).
10. (20 pts.) A motorboat is at rest at time $t = 0$ when its motor instantly turns on. Assume that the motor provides a constant acceleration of 20m/s^2, and that the water resistance results in a deceleration of $3v \text{ m/s}^2$, where v is the boat’s velocity in meters per second.

(a) Set up and solve an initial value problem to determine the boat’s velocity $v(t)$ at time t.

(b) Determine how far the boat travels in the first 10 seconds.
11. (20 pts.) At time $t = 0$, a large tank contains 200 pounds of salt dissolved in 100 gallons of water. A brine solution containing 3 pounds of salt per gallon is pumped into the tank at a rate of 2 gallons per minute and the well-mixed solution is pumped out of the tank at a rate of 4 gallons per minute. Set up and solve the initial value problem to determine the amount $x(t)$ of salt in the tank at time t ($0 \leq t \leq 50$).
General Properties

\[\mathcal{L}\{af(t) + bg(t)\} = a\mathcal{L}\{f(t)\} + b\mathcal{L}\{g(t)\}, \]
\[\mathcal{L}\{f'(t)\} = s\mathcal{L}\{f(t)\} - f(0), \]
\[\mathcal{L}\{f''(t)\} = s^2\mathcal{L}\{f(t)\} - sf(0) - f'(0), \ldots \]
\[\mathcal{L}\{e^{at}f(t)\} = F(s - a) \quad \text{if} \quad F(s) = \mathcal{L}\{f(t)\}, \]
\[\mathcal{L}\{u(t-a)f(t-a)\} = e^{-as}F(s) \quad \text{if} \quad F(s) = \mathcal{L}\{f(t)\}. \]
\[\mathcal{L}\{f(t) \ast g(t)\} = \mathcal{L}\{f(t)\} \mathcal{L}\{g(t)\}. \]

Some Special Transforms

\[\mathcal{L}\{e^{at}\} = \frac{1}{s-a} \quad (s > a), \]
\[\mathcal{L}\{\cos(bt)\} = \frac{s}{s^2 + b^2} \quad (s > 0), \]
\[\mathcal{L}\{\sin(bt)\} = \frac{b}{s^2 + b^2} \quad (s > 0), \]
\[\mathcal{L}\{\cosh(bt)\} = \frac{s}{s^2 - b^2} \quad (s > |b|), \]
\[\mathcal{L}\{\sinh(bt)\} = \frac{b}{s^2 - b^2} \quad (s > |b|), \]
\[\mathcal{L}\{1\} = \frac{1}{s}, \quad \mathcal{L}\{t\} = \frac{1}{s^2}, \quad \mathcal{L}\{t^2\} = \frac{2 \cdot 1}{s^3}, \quad \mathcal{L}\{t^3\} = \frac{3 \cdot 2 \cdot 1}{s^4} \quad (s > 0), \]
\[\mathcal{L}\{t^n\} = \frac{n!}{s^{n+1}} \quad (s > 0) \quad \text{for any positive integer} \ n. \]
\[\mathcal{L}\{u(t-c)\} = \frac{e^{-cs}}{s} \quad (s > 0). \]