next up previous
Next: About this document Up: No Title Previous: No Title

References

1
G.S. Ammar, W.B. Gragg and L. Reichel, On the eigenproblem for orthogonal matrices. In: Proceedings of the 25th Conference on Decision and Control, IEEE, New York, pp 1063--1066, 1986.
2
G.S. Ammar, W.B. Gragg and L. Reichel, Determination of Pisarenko frequency estimates as eigenvalues of an orthogonal matrix. In: F.T. Luk (Ed.), Advanced Algorithms and Architectures for Signal Processing II, Proc. SPIE 826, pp 143--145, 1987.
3
G.S. Ammar, W.B. Gragg and L. Reichel, Constructing a unitary Hessenberg matrix from spectral data. In: G.H. Golub and P. Van Dooren (Eds.), Numerical Linear Algebra, Digital Signal Processing and Parallel Algorithms, Springer, New York, pp 385--396, 1991.
4
G.S. Ammar, W.B. Gragg and L. Reichel, Downdating of Szego polynomials and data fitting applications. Lin. Alg. Appl. 172, pp 315--336, 1992.
5
G.S. Ammar, L. Reichel, and D.C. Sorensen, An implementation of a divide and conquer algorithm for the unitary eigenproblem. ACM Trans. Math. Software, to appear.
6
A. Bunse-Gerstner and L. Elsner, Schur parameter pencils for the solution of the unitary eigenproblem. Lin. Alg. Appl. 154--156, pp 741--778, 1991.
7
A. Bunse-Gerstner and C. He, A Sturm sequence of polynomials for unitary Hessenberg matrices, preprint.
8
W.B. Gragg, Positive definite Toeplitz matrices, the Arnoldi process for isometric operators, and Gaussian quadrature on the unit circle (in Russian). In: E.S. Nikolaev (Ed.), Numerical Methods in Linear Algebra, Moscow University Press, Moscow, pp 16-32, 1982.
9
W.B. Gragg, The QR algorithm for unitary Hessenberg matrices. J. Comput. Appl. Math. 16, pp 1--8, 1986.
10
W.B. Gragg and L. Reichel, A divide and conquer method for unitary and orthogonal eigenproblems. Numer. Math. 57, pp 695--718, 1990.
11
L. Reichel and G.S. Ammar, Fast approximation of dominant harmonics by solving an orthogonal eigenvalue problem. In: J. McWhirter et al. (Eds.), Proc. Second IMA Conference on Mathematics in Signal Processing, Oxford University Press, pp 575--591, 1990.
12
L. Reichel, G.S. Ammar and W.B. Gragg, Discrete least squares approximation by trigonometric polynomials. Math. Comp. 57, pp 273-289, 1991.
13
T.-L. Wang, Convergence of the QR Algorithm with Origin Shifts for Real Symmetric Tridiagonal and Unitary Hessenberg Matrices. Ph.D. Dissertation, Dept. of Mathematics, University of Kentucky, Lexington, KY, 1988.


Greg Ammar
Sun Feb 12 23:42:52 CST 1995