
Corrections and clarifications

Note: Some corrections were made after the first printing of the text.

page 9, line 8
For of the form $ma + nb$
read of the form $ma + nb$, where $m, n \in \mathbb{Z}$,

page 22, line -13 (Exercise 17)
For Use Exercise 16
read Use Exercise 15

page 24, line -3
For doing any computations with
read adding, subtracting, or multiplying

page 26, line -13
For has no solution modulo 6.
read has no solution.

page 27, line -8
For the equation $x \equiv cb_1 + mk$
read the equation $x = cb_1 + mk$

page 35, line -6
For there is a unique solution to the congruence $ax \equiv 1 \pmod{n}$,
read any two solutions to $ax \equiv 1 \pmod{n}$ are congruent modulo n,

page 38, line 14
For Proof. See Exercises 15 and 27.
read Proof. See Exercise 28.

page 48, line -1
For equivalence class
read congruence class

page 54, line 17
For define an inverse $g : S \rightarrow T$
read define an inverse $g : T \rightarrow S$

page 54, line 19
For $S \times T$
read $T \times S$

page 54, line -12 (Exercise 1) and line -6 (Exercise 2)
For or onto.
read and whether it is onto.

page 56, line 9 (Exercise 17)
Add Let A be a nonempty set.
page 60, line 3 (Definition 2.2.4)
For subsets of S
read nonempty subsets of S

page 60, line 6
For set S
read nonempty set S

page 63, line -10 (Exercise 11)
For the set S
read the nonempty set S

page 63, line -9 (Exercise 11)
For Example 2.2.6
read Proposition 2.2.5

page 64, line -8
For write $\sigma \tau$.
read write $\sigma \tau$, and refer to this as the product of the two permutations.

page 67, line 2
For cycle of length k
read cycle of length $k \geq 2$

page 67, line 3
Add In fact, $(1) = (a)$ for any cycle (a) of length 1.

page 67, line -2
For illustrates
read illustrate

page 70, line 2 (Theorem 2.3.5)
For The cycles that appear in the product
read The cycles of length ≥ 2 that appear in the product

page 70, line -10
Add Note that cycles of length 1 can be omitted.

page 71, line -4
For $\sigma^k(a_1) = a_k$
read $\sigma^k(a_1) = a_{k+1}$

page 76, line -9 (Exercise 10)
For Let τ be the cycle
read Let $\tau \in S_n$ be the cycle

page 76, line -8 (Exercise 10)
For if σ is any permutation,
read if $\sigma \in S_n$,

page 76, line -6 (Exercise 10)
For there exists a permutation σ
read there exists a permutation $\sigma \in S_n$
For if and only its
read if and only if its

For the stated range
read the stated codomain

For (iii) \(a(b + c) = ab + ac \) for all \(a, b, c \in F \).
read (iii) \(a(b + c) = ab + ac \) and \((a + b)c = ac + bc\) for all \(a, b, c \in F \).

For It must contain an element of order 2, since the order of \(G \) is even.
read Show that \(G \) must contain an element of order 2 (see Exercise 21 of Section 3.1).

For the first row of the table
read the last row of the table

For multiplying both sides of this equation by \((\phi(x_2))^{-1} \) gives us
read \(\phi(x_1x_2^{-1}) = \phi(x_1)(\phi(x_2))^{-1} = e \),

\(\phi(x_1x_2^{-1})\phi(x_2) = \phi(x_1x_2^{-1}x_2) = \phi(x_1) = \phi(x_2) = e\phi(x_2) \), so we can
cancel \(\phi(x_2) \) to get \(\phi(x_1x_2^{-1}) = e \),

For since the subgroups can be linearly ordered.
read since for any two subgroups, one is contained in the other. (Why?)

For where \(p \) is a prime number.
read where \(p \) is a prime number, and \(k \geq 1 \).

For the identity \(ba = a^2b \).
read the equation \(ba = a^2b \).

For identity \(ba = a^3b \).
read equation \(ba = a^3b \).

For identity \(ba = a^{n-1}b \).
read formula \(ba = a^{n-1}b \)

For the identities they satisfy.
read the equations \(a^n = e, b^2 = e, \) and \(ba = a^{n-1}b \) that they satisfy.

For the congruence classes of \(G/\phi \) are just the individual elements of \(G \).
read the equivalence classes of \(G/\phi \) are just the subsets of \(G \) consisting of single elements,
For The group G is called a simple group
read The nontrivial group G is called a simple group

For identity $ba = a^3b$
read equation $ba = a^3b$

For Let H be a subgroup
read Let H be a finite subgroup

For $a_1 - a_2 = (b_2 - a_2)\sqrt{2}$, so if $b_2 - a_2 \neq 0$ then we can divide by $b_2 - a_2$,
read $a_1 - a_2 = (b_2 - b_1)\sqrt{2}$, so if $b_2 - b_1 \neq 0$ then we can divide by $b_2 - b_1$,

For $x^5 - 2x + 1$ and $4x + 1$ are identical, as functions.
read $x^5 - 2x + 1$ and $4x + 1$ define the same function.

For multiplying each term by every other
read multiplying each term by every other

Add Note that if both $f(x)$ and $g(x)$ are the zero polynomial, then by our definition there is no greatest common divisor.

Add (where p is any prime number).

For If c is a root of $f(x)$
read If c is an integral root of $f(x)$

For rational roots of equations such as
read integer (and thus rational) roots of monic equations such as

For $(x^8 - x^7 + x^5 - 2x^4 + x^3 - x + 1)$
read $(x^8 - x^7 + x^5 - x^4 + x^3 - x + 1)$

For Let m and n are
read Let m and n be

For Proposition 4.4.6
read Theorem 4.4.6

For Find an irreducible polynomials
read Find an irreducible polynomial
page 199, line 8
For effect
read In effect

page 211, line 14
For commutative rings
read commutative rings with identity,
For ring homomorphism
read ring homomorphism that preserves the multiplicative identities

page 218, line -12 (Exercise 20)
For with characteristic \(p \)
read with characteristic \(p > 0 \)

page 229, line 15
For the sum should be \(ab + bc \)
read the sum should be \(ad + bc \)

page 236, line 5
For \(e \) and \(\pi \) are transcendental
read \(e \) and \(\pi \) are transcendental over \(\mathbb{Q} \)

page 249, line 3
For Proposition 4.2.1
read Proposition 4.3.1

page 259, line -3 (Theorem 6.6.1)
For irreducible factors
read monic irreducible factors

page 263, line 7 (Definition 6.6.8)
For The number of irreducible polynomials
read The number of monic irreducible polynomials

page 270, line -1, and page 271, lines 1, 3, 4
For \(\left(\frac{3}{p} \right) \)
read \(\left(\frac{p}{3} \right) \)

page 274, line 2
For \(G = N_0 \supseteq N_1 \supseteq \cdots \supseteq N_{k-1} \supseteq N_k = \{e\} \)
read \(G = N_0 \supset N_1 \supset \cdots \supset N_{k-1} \supset N_k = \{e\} \)

page 274, line 16
For A nontrivial abelian group
read An abelian group

page 279, line 8 (Exercise 10)
For for all positive integers \(n \)
read for all positive integers \(n \geq 3 \).

page 281, line -15
For \(ab \in G \)
read \(ab \in C(x) \)
For $axa^{-1} = x$ implies that $a^{-1}xa = x$, and then $a^{-1} \in C(x)$ since $a^{-1}x(a^{-1})^{-1} = x$.

Furthermore, $a^{-1} \in C(x)$, since $axa^{-1} = x$ implies that $x = a^{-1}xa$, and thus $a^{-1}x(a^{-1})^{-1} = x$.

For identity $ba = a^{-1}b$. Show that a^m is conjugate to only a^{-m},

For maximal cyclic subgroup of G read cyclic subgroup of G of maximal order

For $Z_{p^\alpha_1} \times Z_{p^\alpha_2} \times \cdots \times Z_{p^\alpha_n} = Z_{p^\beta_1} \times Z_{p^\beta_2} \times \cdots \times Z_{p^\beta_m}$ read $Z_{p^\alpha_1} \times Z_{p^\alpha_2} \times \cdots \times Z_{p^\alpha_n} \cong Z_{p^\beta_1} \times Z_{p^\beta_2} \times \cdots \times Z_{p^\beta_m}$

For if n is a nonnegative integer less than 2^{k-2}, read as n ranges over nonnegative integers less than 2^{k-2}.

For $\pm 5^n \pmod{2^k}$, with $m > n$.

For $\pm 5^n \pmod{2^k}$, with $m \geq n$.

Add By omitting all unnecessary terms, we can assume that each factor group is nontrivial.

For $(G/N)^{(n)} = N$ read $(G/N)^{(n)} = \{N\}$

Add The number of composition factors in a composition series is called the length of the series.

For G_i and H_i is simple read G_i and H_i is a finite simple group

For Prove that any normal Sylow p-subgroup read Prove that if G is finite, then any normal Sylow p-subgroup of G
For $d, f \in \mathbb{Z}^+$
read $d, f \in \{1, 2, \ldots, n\}$

For In the first case, $\sigma^{-1} \tau \sigma^{-1} = (a, b, d, c, g)$, for $\tau = (b, c, d)$.
read Let $\tau = (b, c, d)$. In the first case, $\sigma^{-1} \tau \sigma^{-1} = (a, b, d, c, g)$.

For a polynomial with no repeated roots
read a polynomial such that each irreducible factor has no repeated roots,

For If $f(x)$ has no repeated roots,
read If no irreducible factor of $f(x)$ has repeated roots,

For Any polynomial
read Any nonconstant polynomial

For The subgroup $G_1 = \text{Gal}(F/\mathbb{C})$ of G is also a 2-group, and is normal since it has index 2. Thus F is a normal extension of \mathbb{C}, and so we can again apply Theorem 8.2.8. If G_1 is not the trivial group, then the first Sylow theorem implies that it has a normal subgroup N of index 2.
read The subgroup $G_1 = \text{Gal}(F/\mathbb{C})$ of G is also a 2-group. If G_1 is not the trivial group, then the first Sylow theorem implies that it has a normal subgroup N of index 2. Since F is a normal extension of \mathbb{C}, we can again apply Theorem 8.3.8.

For $[K : \mathbb{C}] = [G : N] = 2$
read $[K : \mathbb{C}] = [G_1 : N] = 2$

For $n_1, n_2, \ldots, n_m \in \mathbb{Z}$
read $n_1, n_2, \ldots, n_m \in \mathbb{Z}^+$

For It can be shown that the polynomial $f(x) = g(x) - 2$ has exactly two nonreal roots in \mathbb{C}, and if k is prime, then the Galois group of $f(x)$ over \mathbb{Q} is S_k.
read The polynomial $f(x) = g(x) - 2$ has exactly two nonreal roots in \mathbb{C}, if m is chosen large enough, and if k is prime, then its Galois group over \mathbb{Q} is S_k (see Section 4.10 of Jacobson’s Basic Algebra I).

For α^k must be a root of $f(x)$
read β^k must be a root of $f(x)$

Note The complete answer to the constructibility question is that a regular n-gon is constructible if and only if $n = 2^kp_2 \cdots p_m$, where $k \geq 0$, and
the factors p_i are distinct Fermat primes. The remarks in Example 8.5.2 indicate a proof of the “only if” part of the condition. See Section 4.11 of Jacobson’s *Basic Algebra I* for the “if” part of the proof.

page 343, line -13
For Wedderburn (1891-1965)
read Wedderburn (1882-1948)

page 346, line 4 (Proposition 8.6.2)
For roots r_1, \ldots, r_n in its splitting field F.
read $f(x) = p_1(x)p_2(x) \cdots p_k(x)$ its factorization in $K[x]$ as a product of distinct irreducible polynomials. If F is the splitting field of $f(x)$ over K,

page 349, line 6
For $\Delta = -4p^3 - 27q^3$.
read $\Delta = -4p^3 - 27q^2$.

page 351, line 10
For with precisely two real roots
read with precisely three real roots

page 351, line 15
For a cycle of the form
read a cycle of the form

page 352, lines 7,8
For Reducing modulo 31, we have the factorization $x^5 - 2x^3 - 8x - 2 = (x^3 + 15x^2 + 4x - 1)(x + 8)^2$.
read Reducing modulo 37, we have the factorization $x^5 - 2x^3 - 8x - 2 = (x^3 - 12x^2 - 11x + 7)(x^2 + 12x + 5)$.

page 362, line 16 (Exercise 10)
For is principal,
read has the form aR, for some $a \in R$,

page 363, lines 8 and -13
For $f(x) = a_nx^n + a_{n-1}x^{n-1} + a_1x + a_0$
read $f(x) = a_nx^n + a_{n-1}x^{n-1} + \ldots + a_1x + a_0$

page 364, line 11
For To show uniqueness, suppose that $(a/b)f^*(x) = (c/d)g^*(x)$, where $g^*(x)$ is also primitive. Then $adf^*(x) = bcf^*(x)$, and so the irreducible factors of ad and bc must be the same. Since a and b are relatively prime and D is a unique factorization domain, this implies that a and c are associates and that b and d are also associates. This in turn implies that $f^*(x)$ and $g^*(x)$ are associates.
To show uniqueness, let \((a/b)f^*(x) = (c/d)g^*(x)\), where \(g^*(x)\) is primitive and \(c\) and \(d\) have no irreducible factors in common. Then \(adf^*(x) = beg^*(x)\), so the irreducible factors of \(ad\) and \(bc\) must be the same. Since \(a\) and \(b\) have no irreducible factors in common and \(D\) is a unique factorization domain, we see that \(a\) and \(c\) are associates, and that \(b\) and \(d\) are associates. Thus \(f^*(x)\) and \(g^*(x)\) are associates.

page 373, line 3
For \(x^3 + 1\)
read \(x^3 - 1\)

page 373, line 4
For \(x^3 - 1\)
read \(x^3 + 1\)

page 373, line 12
For the defining identity
read the defining equation

page 393, line -14
For \((z + w) = \overline{z + w}\) and \((zw) = \overline{zw}\).
read \(z + w = \overline{z + w}\) and \(zw = \overline{zw}\).

page 413, line -3
For \([x + 1] \mid [0] \ [x + 1] \ [x + 1] \ [x + 1] \ [x + 1] \ [0]\)
read \([x + 1] \mid [0] \ [x + 1] \ [x + 1] \ [x + 1] \ [0]\)

Last revision: 2/22/2005