1. (30 pts) Find the derivative of each of these functions. You do not need to simplify your answers.

(a) \(p108 \#29 \) \(f(x) = \frac{x}{3} + \frac{3}{x} = \frac{1}{3}x + 3x^{-1} \) \(f'(x) = 3 - 3x^{-2} \)

(b) \(p215 \#15 \) \(f(x) = 2(x^3 - 1)(3x^2 + 1) \) \(f'(x) = 2(3x^2)(3x^2 + 1)^4 + 2(x^3 - 1)(4x^2 + 1)^3(6x) \)

(c) \(f(x) = \ln(x^4 - e^x) \) \(f'(x) = \frac{4x^3 - e^x}{x^4 - e^x} \)

(d) \(f(x) = \frac{e^{x^2-x}}{e^x + 1} \) \(f'(x) = \frac{(e^{x^2-x})(2x-1)(e^x + 1) - (e^{x^2-x})(e^x)}{(e^x + 1)^2} \)

2. (a) \(p96 \#23 \) \(\lim_{x \to 3} \frac{x^2 - 6x}{x^2 - 5x - 6} = \lim_{x \to 3} \frac{(x-6)(x)}{(x-6)(x+1)} = \lim_{x \to 3} \frac{x}{x+1} = \frac{6}{7} \)

(b) \(p215 \#15 \) \(\lim_{x \to 5} \frac{x^2 - 10x + 25}{x^2 - 25} = \lim_{x \to 5} \frac{(x-5)(x-5)}{(x-5)(x+5)} = \lim_{x \to 5} \frac{x-5}{x+5} = \frac{0}{10} = 0 \)

3. (20 pts; p156, Ex 2) Using the techniques of calculus, sketch the graph of the function \(f(x) = x^3 - 3x^2 + 5 \). On the graph, indicate all relative extreme points (relative maximum and relative minimum points) and all points of inflection.

\[f'(x) = 3x^2 - 6x \]

\[f''(x) = 6x - 6 \]

Setting \(f'(x) = 0 \) gives the potential extreme points \(x = 0 \), \(x = 2 \). Since \(f''(0) = -6 \) and \(f''(2) = 6 \), there is a local maximum at \((0, 5)\) and a local minimum at \((2, 1)\). Setting \(f''(x) = 0 \) shows that \((1, 3)\) is a point of inflection. You should also plot \((-1, 1)\) and \((3, 5)\) on the graph.

4. (5 pts) Let \(P(t) = 500 - 100e^{-5t} \). When \(t = 2 \), is \(P(t) \) increasing or decreasing? Explain your answer.

We have \(P'(t) = -100e^{-5t} \), so \(P'(2) = \frac{500}{e^{10}} > 0 \), and so \(P(t) \) is increasing when \(t = 2 \).

5. (10 pts) Find an equation for the line tangent to the curve \(y = 2x(x - 4)^6 \) at \(x = 5 \).

When \(x = 5 \), \(y = 2(5 - 4)^6 = 10 \). \(y' = 2(x - 4)^6 + 2(2x)(6)(x - 4)^5 \) When \(x = 5 \), \(y' = 2(1)^6 + 2(5)(1)^5 = 62 \).

The equation of the tangent line is \(y = 62(x - 5) + 10 \).

6. (15 pts; p201 #56) A closed rectangular box with a square base is to be constructed using two different types of wood. The top is made of wood costing \$3 per square foot, and the remainder is made of wood costing \$1 per square foot. Suppose that \$48 is available to spend. Find the dimensions of the box of the greatest volume that can be constructed.

Solution: If the box has a base that is \(x \) feet by \(x \) feet, with height \(h \), then the problem is to maximize the volume \(V = x^2h \) (this is the objective equation). The cost of the box is \(3x^2 + x^2 + 4xh = 48 \), representing the cost of the top, the bottom, and the four sides, respectively. This gives the constraint equation, which we can solve for \(h \) in terms of \(x \).

Objective: \(V = x^2h \)
Constraint: \(3x^2 + x^2 + 4xh = 48 \) \(x^2 + xh = 12 \) \(h = \frac{12 - x^2}{x} \)

\(V = x^2h = x^2 \left(\frac{12 - x^2}{x} \right) = x(12 - x^2) = 12x - x^3 \). \(V'(x) = 12 - 3x^2 \) \(V''(x) = -6x \)

Setting \(V'(x) = 0 \) we get \(12 - 3x^2 = 0 \), or \(x^2 = 4 \), so \(x = \pm 2 \).

We have \(V''(2) = -12 \), so \(V'(x) \) is concave down at \(x = 2 \), showing that \(x = 2 \) does lead to a maximum value for the area. Substituting \(x = 2 \) in the constraint equation \(h = \frac{12 - x^2}{x} \) gives \(h = 4 \).

7. (12 pts) Ten grams of a certain radioactive material decays to three grams in five years. What is the half-life of the radioactive material?

We use the equation \(P(t) = P_0e^{-\lambda t} \), with \(P_0 = 10 \), the initial amount.

\(P(5) = 3 \) \(10e^{-\lambda \cdot 5} = 3 \) \(e^{-\lambda \cdot 5} = .3 \) \(-\lambda \cdot 5 = \ln(.3) \) \(\lambda = -\frac{1}{5} \ln(.3) = -.2\ln(.3) \)
To find the half-life, we need to solve for t in the equation $P(t) = \frac{5}{10}e^{-\lambda t} = \frac{5}{10}$.

$$P(t) = 5 \quad 10e^{-\lambda t} = 5 \quad e^{-\lambda t} = \frac{1}{2} \quad -\lambda t = \ln(0.5) \quad \text{Answer: } t = \frac{\ln(0.5)}{-\lambda} = \frac{\ln(0.5)}{2\ln(3)} = \frac{5\ln(0.5)}{\ln(3)}$$

8. (18 pts) The demand equation for a certain product is $p = 180 - 3x$, where p is the price and x is the number of units produced. The cost function is $C(x) = 60 + 80x - x^2$, where $0 \leq x \leq 40$.

(a) Determine the level of production that will maximize the profit, and determine the corresponding price.

$$\text{Profit} = \text{Revenue} - \text{Cost} = (\text{price per unit})(\text{# units}) - \text{Cost}$$

$$P(x) = (180 - 3x)(x) - (60 + 80x - x^2) = 180x - 3x^2 - 60 - 80x + x^2 = -2x^2 + 100x - 60$$

Setting $P'(x) = 0$ gives $x = 100$ or $x = 4$. Since $P''(x) = -4$, this gives a maximum. The corresponding price is $p = 180 - 3(25) = 105$.

(b) Suppose that the government imposes a tax of $4 per unit produced, increasing the cost by $4 per unit.

Since the cost is increased by $4 per unit, we must add $4x$ to the cost function.

$$P(x) = (180 - 3x)(x) - (60 + 84x - x^2) = -2x^2 + 96x - 60 \quad P'(x) = -4x + 96$$

Setting $P'(x) = 0$ gives $4x = 96$ or $x = 24$. The corresponding price is $p = 180 - 3(24) = 108$.

9. (30 pts) Find the following integrals.

(a) $\int_{1}^{8} \frac{2x^2/3}{4/3} \, dx = \frac{2x^4/3}{4/3} \bigg|_{1}^{8} = \frac{2}{3} (\sqrt[3]{x})^4 \bigg|_{1}^{8} = \frac{3 \cdot 2^4}{2} - \frac{3 \cdot 1^4}{2} = 24 - \frac{3}{2} = 22.5$

(b) $\int_{2}^{4} \left(\frac{2}{x^2} - \frac{1}{x+5} \right) \, dx = \int_{2}^{4} \left(2x^{-2} - \frac{1}{x+5} \right) \, dx = \frac{2x^{-1}}{-1} - \ln(x+5) \bigg|_{2}^{4} = -2 - \ln(5) - \left[-\frac{2}{4} - \ln(2) \right] = -\frac{5}{2} + \ln(7) - \ln(9)$

(c) $\int_{x}^{(\ln x)^3} x \, dx = \int u^3 \, du = \frac{u^4}{4} + C = \frac{1}{4} (\ln x)^4 + C$ (Substitute $u = \ln x$, and $du = \frac{1}{x} \, dx$.)

10. (15 pts; p335 Example 2) Find the area bounded by the curves $y = x^2 - 4x + 4$ and $y = x^2$ (from $x = 0$ to $x = 3$). First graph the two functions.

See the textbook for the graphs and the solution: $\int_{0}^{1} (-4x + 4) \, dx + \int_{1}^{3} (4x - 4) \, dx = 2 + 8 = 10$

11. (20 pts) Find the derivative of each of the following functions.

(a) $f(x) = \sqrt{x^2 + x^5} = (x^2 + x^5)^{1/2}$, $f'(x) = \frac{1}{2} (x^2 + x^5)^{-1/2} (2x + 5x^4 + 5x^4) - 1/2$

(b) $f(x) = \ln \left(\frac{e^{4x} \sqrt{3x + 1}}{1 - x^2} \right) = 4x + \frac{1}{2} \ln(3x + 1) - \ln(1 - x^2)$

$f'(x) = 4 + \frac{3}{2(3x + 1)} + \frac{2x}{1 - x^2}$

12. (10 pts; p97 #33) Using the limit definition of the derivative, find $f'(x)$ for $f(x) = \frac{1}{2x + 5}$.

$$\lim_{h \to 0} \frac{f(x + h) - f(x)}{h} = \lim_{h \to 0} \frac{1}{h} \left[\frac{2x + 5}{2(x + h) + 5} - \frac{2x + 5}{2(x + h) + 5} \right] = \lim_{h \to 0} \frac{1}{h} \left(\frac{2x + 5}{2(x + h) + 5} - \frac{2x + 5}{2(x + h) + 5} \right) = \lim_{h \to 0} \frac{1}{h} \left(\frac{2x + 5}{2(x + h) + 5} - \frac{2x + 5}{2(x + h) + 5} \right) = \frac{-2}{(2x + 5)^2}$$