1. (20 points) Find the derivative \(f'(x) \) or \(\frac{dy}{dx} \).

(a) (p157 #14) \(f(x) = \sqrt{x} - \frac{1}{\sqrt{x}} = x^{1/2} - x^{-1/2} \) \(f'(x) = (1/2)x^{-1/2} + (1/2)x^{-3/2} \)

(b) (p183 #17) \(f(x) = (3x - 2)^{10}(5x^2 - x + 1)^{12} \) Use the product rule
\(f'(x) = (10)(3x - 2)^9(3)(5x^2 - x + 1)^{12} + (3x - 2)^{10}(12)(5x^2 - x + 1)^{11}(10x - 1) \)

(c) (p215 #31) \(y = \sin(\tan(\sqrt{1 + x^2})) \) Use the chain rule (3 times)
\(\frac{dy}{dx} = \cos(\tan(\sqrt{1 + x^2})) \cdot (\sec^2(\sqrt{1 + x^2})) \cdot (1/2)(1 + x^2)^{-1/2}(3x^2) \)

(d) (p187 Ex 2) \(x^3 + y^3 = 6xy \) Use implicit differentiation (See the text for the solution)

2. (5 points; p197 #17) Find the second derivative \(f''(x) \) for \(f(x) = \tan(3x) \). Use the chain rule.
\(f'(x) = (\sec^2(3x))(3) = 3(\sec(3x))^2 \)
\(f''(x) = 6(\sec(3x)) \cdot \sec(3x) \cdot \tan(3x) \cdot (3) \)

3. (6 points; p176 #40) \(\lim_{x \to 0} \frac{\tan x}{4x} = \lim_{x \to 0} \frac{\sin x}{x} \cdot \frac{1}{4 \cos x} = \lim_{x \to 0} \frac{\sin x}{x} \cdot \lim_{x \to 0} \frac{1}{4 \cos x} = 1 \cdot \frac{1}{4 \cdot 1} = \frac{1}{4} \)

4. (7 points; p157 #64) Find the equations of the tangent lines to the curve \(y = \frac{x - 1}{x + 1} \) that are parallel to the line \(x - 2y = 2 \).

\[x - 2y = 2 \quad 2y = x - 2 \quad y = \frac{1}{2}x - 1 \]

We need to solve \(y' = \frac{1}{2} \) Using the quotient rule, we get
\(y' = \frac{1(x + 1) - (x - 1)(1)}{(x + 1)^2} = \frac{x + 1 - x + 1}{(x + 1)^2} = \frac{2}{(x + 1)^2} \)

Setting \(\frac{2}{(x + 1)^2} = \frac{1}{2} \), we get \(4 = (x + 1)^2 \), so \(x + 1 = \pm 2 \), or \(x = 1, -3 \). When \(x = 1 \), \(y = 0 \), and the corresponding tangent line is \(y = \frac{1}{2}(x - 1) \). When \(x = -3 \), \(y = 2 \), and the corresponding tangent line is \(y = \frac{1}{2}(x + 3) + 2 \).

5. (6 points; p211 #24) For \(y = \sqrt{1 - x} \), find the differential \(dy \) and evaluate \(dy \) for \(x = 0 \) and \(dx = 0.02 \).
\(\frac{dy}{dx} = \frac{1}{2}(1 - x)^{-1/2} = \frac{1}{2\sqrt{1 - x}} \). When \(x = 0 \), \(\frac{dy}{dx} = \frac{1}{2} \) and so \(dy = \frac{dy}{dx} dx = \frac{1}{2} \cdot 0.02 = 0.01 \).

6. (6 points; p217 #79) A window has the shape of a square surmounted by a semicircle. The base of the window is measured as having width 60cm, with a possible error of 0.1cm. Use differentials to estimate the maximum error possible in computing the area of the window.

Let \(x \) be the width of the window. Then the area of the window is \(A(x) = x^2 + \frac{1}{2} \pi \left(\frac{x}{2} \right)^2 = x^2 + \frac{1}{8} \pi x^2 \), and \(\Delta A = A'(x) \Delta x = (60^2 + \frac{1}{8} \pi (60^2))(0.1) = (3600 + \pi(15)(30))(0.1) = (3600 + 450\pi)(0.1) = 360 + 450\pi \).

7. (8 pts; p167 #8) If a ball is thrown vertically upward with a velocity of 80 ft/sec, then its height after \(t \) seconds is \(s = 80t - 16t^2 \).
(a) What is the maximum height reached by the ball?

We have \(s'(t) = 80 - 32t \). Set \(s'(t) = 0 \), so \(80 - 32t = 0 \), or \(t = 2.5 \). Then the corresponding height is \(s = 80(2.5) - 16(6.25) = 200 + 100 = 300 \text{ ft} \).

(b) What is the velocity of the ball when it is 96 ft above the ground on the way up?

When \(s = 96 \), we get \(96 = 80t - 16t^2 \) or \(16t^2 - 80t + 96 = 0 \). Dividing by 16 gives \(t^2 - 5t + 6 = 0 \), so \(t = 2 \) or \(t = 3 \). The first solution must correspond to a height of 96 ft on the way up. Substituting \(t = 2 \) into the formula for the derivative gives \(s'(2) = 80 - 64 = 16 \), so the velocity is 16ft/sec.
8. (17 pts; p248 #32) For the function \(f(x) = x^3 - 12x + 1 \), graph the function after finding
(a) the intervals on which \(f \) is increasing or decreasing:

We need to analyze the sign of \(f'(x) = 3x^2 - 12 \). We have \(f'(x) = 3(x^2 - 4) = 3(x + 2)(x - 2) \), so \(f'(x) = 0 \) when \(x = -2 \) or \(x = 2 \). We need to look at the sign of \(f'(x) \) on the intervals \((−∞, -2)\), \((-2, 2)\), and \((2, +∞)\). Test at \(x = -3, x = 0, \) and \(x = 3 \). We get \(f'(-3) = (3)(-1)(-5) \), which is positive, \(f'(0) = (3)(2)(-2) \), which is negative, and \(f'(3) = (3)(5)(1) \), which is positive.

Conclusion: \(f(x) \) is increasing on \((−∞, -2)\) and \((2, +∞)\) and decreasing on \((-2, 2)\).

(b) the local maximum and minimum values of \(f \);

Using the first derivative test we can see that there is a local maximum at \(x = -2 \) and a local minimum at \(x = 2 \). The corresponding points on the curve are \((-2, 17)\) and \((2, -15)\), since \(f(-2) = -8 + 24 + 1 = 17 \) and \(f(2) = 8 - 24 + 1 = -15 \).

(c) the intervals of concavity and the inflection points.

We need to analyze the sign of \(f''(x) = 6x \). The graph is concave down on \((−∞, 0)\), and concave up on \((0, +∞)\), so \((0, 1)\) is the inflection point.

9. (13 points; p248 #32) For the function \(f(x) = (x^2 - 1)^3 \), find
(a) the intervals on which \(f \) is increasing or decreasing:

We have \(f'(x) = 3(x^2 - 1)^2(2x) = 6x(x^2 - 1)^2 \). Setting \(f'(x) = 0 \) we get \(6x(x^2 - 1)^2 = 0 \), so either \(x = 0 \) or \(x^2 - 1 = 0 \), giving \(x = ±1 \). We need to test the sign of \(f'(x) \) on the intervals \((−∞, -1)\), \((-1, 0)\), \((0, 1)\), and \((1, +∞)\).

Instead of choosing a point in each interval, it is probably better to analyze the sign of each factor of \(f'(x) \). Since \(f'(x) = 6x(x^2 - 1)^2 \), look at the factors \(6x \) and \(x^2 - 1 \) separately. The first factor is negative for \(x < 0 \) and positive for \(x > 0 \). The second factor is never negative. Conclusion: \(f'(x) ≤ 0 \) for \(x < 0 \) and \(f'(x) ≤ 0 \) for \(x > 0 \), so \(f(x) \) is increasing on \((−∞, -1)\) and \((-1, 0)\) and decreasing on the intervals \((0, 1)\) and \((1, +∞)\).

(b) the local maximum and minimum values of \(f \);

Although \(f'(x) = 0 \) for \(x = -1, 0, 1 \), the derivative does not change sign at \(x = -1 \) and \(x = 1 \), so these points are neither a relative max nor a relative min. At \(x = 0 \), the function changes from decreasing to increasing, so there is a relative minimum at \((0, -1)\). (Note that \(f(0) = (0^2 - 1)^3 = -1 \).

(c) the intervals of concavity and the inflection points.

Since \(f'(x) = 6x(x^2 - 1)^2 \), we need to use the product rule to find \(f''(x) \). We get \(f''(x) = 6(x^2 - 1)^2 + (6x)(2)(x^2 - 1)(2x) = (x^2 - 1)(6x^2 - 6 + 24x^2) = (x^2 - 1)(30x^2 - 6) = 6(x^2 - 1)(5x^2 - 1) \).

Again, we could test values in each of the 5 intervals that are determined by the 4 zeros of \(f''(x) \). It may be easier to look at the factors.

\[f''(x) = 30(x^2 - 1)(x^2 - \frac{1}{5}) = 30(x + 1)(x - 1)(x + \frac{1}{\sqrt{5}})(x - \frac{1}{\sqrt{5}}) \]

The factors change sign at \(x = -1 \), \(x = -\frac{1}{\sqrt{5}} \), \(x = \frac{1}{\sqrt{5}} \), and \(x = 1 \). If \(x < -1 \), all four factors are negative, and so \(f''(x) \) is positive. Then the sign of \(f''(x) \) alternates.

Conclusion: \(f(x) \) is concave up on the intervals \((−∞, -1)\), \((-\frac{1}{\sqrt{5}}, \frac{1}{\sqrt{5}})\), and \((1, +∞)\)

\(f(x) \) is concave down on the intervals \((-1, -\frac{1}{\sqrt{5}})\) and \((\frac{1}{\sqrt{5}}, 1)\)

10. (12 points; p201 Ex 3) A water tank has the shape of an inverted circular cone with a base radius 2m and height 4m. If water is being pumped into the tank at a rate of 2m³/min, find the rate at which the water level is rising when the water is 3m deep. \textit{Hint}: The volume of a cone is \(V = \frac{1}{3} \pi r^2 h \).

Comments (10/26/06): Page numbers have changed in the 5th edition; this problem is now on page 200.

I would say that this is a pretty hard exam. When I gave it in 2000, there were 4 A’s, 7 B’s, 10 C’s, 3 D’s, and 3 F’s. The class average was 75