1. Let A be the following matrix. $A = \begin{bmatrix} 1 & 2 & 3 & 6 \\ 2 & -3 & 2 & 14 \\ 1 & -5 & -1 & 8 \\ 3 & 1 & -1 & -2 \end{bmatrix}$

 (a) Find the reduced row echelon form of A.

 (b) Find the rank and nullity of A.

 (c) Find a basis for the row space of A.

 (d) Find a basis for the column space of A.

 (e) Find a basis for the nullspace of A.

2. Let M_{22} be the vector space of all 2×2 matrices, and let $Q = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$.

 (a) Let W be the set of all matrices A in M_{22} such that $AQ = 0$. Show that W is a subspace of M_{22}.

 (b) Find a basis for W, and find the dimension of W.

3. Let $S = \{(1, 0, 0), (1, 1, 0), (1, 1, 1)\}$ and $T = \{(1, -1, 0), (0, 1, -1), (0, 0, 1)\}$ be ordered bases for \mathbb{R}^3. Let $v = (3, 2, 1)$.

 (a) Find the coordinate vector $[v]_T$ of v with respect to the basis T.

 (b) Find the transition matrix $P_{S \rightarrow T}$.

 (c) Use $P_{S \rightarrow T}$ to find the coordinate vector $[v]_S$ of v with respect to the basis S.

4. Let $\{v_1, v_2, v_3\}$ be linearly independent vectors in \mathbb{R}^n. Prove that if A is a nonsingular $n \times n$ matrix, then the vectors $\{Av_1, Av_2, Av_3\}$ are linearly independent in \mathbb{R}^n.

5. Find $\det(A)$ by row-reducing A to an upper triangular matrix, for the matrix $A = \begin{bmatrix} 2 & 0 & -1 & 7 \\ 6 & 1 & 0 & 4 \\ 8 & -2 & 1 & 0 \\ 4 & 1 & 0 & 2 \end{bmatrix}$.

6. Show that $\begin{vmatrix} x - 4 & 0 & -1 \\ 2 & x - 1 & 0 \\ 2 & 0 & x - 1 \end{vmatrix} = (x - 1)(x - 2)(x - 3)$.

7. Suppose that A and B are similar matrices. Explain why $\det(A) = \det(B)$.

8. Find the adjoint of $A = \begin{bmatrix} a & b & c \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. Check that $A \cdot \text{adj}(A) = \det(A) \cdot I_3$.