1. Let \(L : \mathbb{R}^5 \to \mathbb{R}^4 \) be the linear transformation defined by \(L(x) = Ax \), for the matrix
 \[
 A = \begin{bmatrix}
 1 & 0 & -1 & 3 & -1 \\
 1 & 0 & 0 & 2 & -1 \\
 2 & 0 & -1 & 5 & -1 \\
 0 & 0 & -1 & 1 & 0 \\
 \end{bmatrix}
 \]. Given that \(A \) row-reduces to
 \[
 \begin{bmatrix}
 1 & 0 & 0 & 2 & 0 \\
 0 & 0 & 1 & -1 & 0 \\
 0 & 0 & 0 & 0 & 1 \\
 0 & 0 & 0 & 0 & 0 \\
 \end{bmatrix},
 \]
 (a) find a basis for \(\ker L \);
 (b) find a basis for \(\text{range } L \);
 (c) find \(\dim(\ker L) \) and \(\dim(\text{range } L) \).

2. Define the linear transformation \(L : P_2 \to P_2 \) by \(L(p(t)) = p(t) + 2p'(t) \).
 (a) Find the matrix \(M_{S \to S}(L) \) of \(L \) relative to the standard basis \(S = \{t^2, t, 1\} \).
 (b) Find the matrix \(M_{T \to T}(L) \) of \(L \) relative to the basis \(T = \{t^2 + t + 1, t + 1, 1\} \).

3. Let \(L : \mathbb{R}_3 \to \mathbb{R}_3 \) be the linear transformation defined by \(L(x_1, x_2, x_3) = (x_1, x_2 + 2x_3, 2x_2 + x_3) \). Let \(S = \{(1,0,0), (0,1,0), (0,0,1)\} \) be the standard basis for \(\mathbb{R}_3 \), and let \(T \) be the basis \(\{(1,0,0), (0,\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}), (0,-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})\} \).
 (a) Find the matrix \(M_{S \to S}(L) \) of \(L \) with respect to the basis \(S \).
 (b) Find the matrix \(M_{T \to T}(L) \) of \(L \) with respect to the basis \(T \).
 (c) Find the transition matrices \(P_{S \to T} \) and \(P_{T \to S} \) that change coordinates.
 (d) Check that \(M_{T \to T}(L) = P_{T \to S} \cdot M_{S \to S}(L) \cdot P_{S \to T} \).

4. Show that if the \(n \times n \) matrix \(B \) is similar to the matrix \(A \), then \(B^T \) is similar to \(A^T \).

5. Let \(W \) be the subspace of \(\mathbb{R}_4 \) spanned by the vectors \((1, -1, 1, 1)\) and \((1, 0, 2, 1)\). Use the Gram-Schmidt process to find an orthonormal basis for \(W \).

6. Let \(M_{22} \) be the vector space of all \(2 \times 2 \) matrices. For \(A, B \) in \(M_{22} \), define an inner product by \((A, B) = \text{tr}(B^T A) \).
 (Recall: \(\text{tr}(A) \) denotes the trace of \(A \), which is the sum of entries on the main diagonal.)
 (a) Check that \((A, B) = (B, A) \) for all \(A, B \) in \(M_{22} \).
 (b) For any \(2 \times 2 \) matrix \(A \), check that \((A, A) = 0 \) if and only if \(A = 0 \).

7. Answer EITHER part A OR part B.
 A. If \(u \) and \(v \) are vectors in an inner product space \(V \), prove the parallelogram law, which states that
 \[||u + v||^2 + ||u - v||^2 = 2||u||^2 + 2||v||^2 \].
 B. Let \(S = \{u_1, u_2, \ldots, u_n\} \) be an orthogonal set of nonzero vectors in an inner product space \(V \). Show that \(S \)
 is a linearly independent set.

8. Find the orthogonal complement in \(\mathbb{R}^4 \) of the subspace \(W \) spanned by the vectors \((1, 1, 0, 0), (0, 1, 1, 0), (0, 0, 1, 1)\).