1. (a) For positive integers \(a\) and \(b\), define \(\gcd(a, b)\).
 (b) Compute \(\gcd(1776, 1492)\).
 (c) Show that if \(a, b, c\) are positive integers, then \(\gcd(a, bc) = 1\) if and only if \(\gcd(a, b) = 1\) and \(\gcd(a, c) = 1\).

2. (a) Find \(\varphi(32)\).
 (b) Use the Euclidean algorithm to find \(\left[5\right]^{-1}_{32}\) in \(\mathbb{Z}_{32}^\times\).
 (c) Find all powers of \(\left[5\right]_{32}\) in \(\mathbb{Z}_{32}^\times\).

3. Define \(\sigma = \left(\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
4 & 6 & 1 & 3 & 2 & 5 & 7
\end{array}\right)\) and \(\tau = \left(\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
3 & 2 & 4 & 6 & 7 & 1 & 5
\end{array}\right)\).
 (a) Compute \(\sigma \tau\) and \(\tau \sigma\).
 (b) Write each of \(\sigma, \tau, \sigma \tau,\) and \(\tau \sigma\) as a product of disjoint cycles.
 (c) Compute the order (in \(S_7\)) of each of the elements \(\sigma, \tau, \sigma \tau,\) and \(\tau \sigma\).

4. Let \(S\) be the set of all ordered pairs \((m, n)\) of positive integers \(m, n\). On \(S\), define \((m_1, n_1) \sim (m_2, n_2)\) if \(m_1 + n_2 = m_2 + n_1\).
 (a) Show that \(\sim\) defines an equivalence relation on \(S\).
 (b) On the equivalence classes \(S/\sim\), define an addition as follows:
 \([m_1, n_1] + [m_2, n_2] = [(m_1 + m_2, n_1 + n_2)]\).
 Show that there is an identity element for this addition. Then find a formula for the additive inverse of \([m, n]\). (You may assume that the formula for addition gives a well-defined and associative binary operation.)

5. (a) State these definitions: group; subgroup.
 (b) State Lagrange’s theorem.
 (c) Let \(G\) be a group, and let \(H\) be a nonempty subset of \(G\). Suppose that if \(x\) and \(y\) are any elements of \(H\), then \(xy^{-1} \in H\). Show that \(H\) must be a subgroup of \(G\).

6. Let \(m\) and \(n\) be positive integers with \(\gcd(m, n) = 1\).
 Define \(\phi : \mathbb{Z}_{mn} \to \mathbb{Z}_m \times \mathbb{Z}_n\) by \(\phi([x]_{mn}) = ([x]_m, [x]_n)\), for all \([x]_{mn} \in \mathbb{Z}_{mn}\).
 (a) Show that \(\phi\) is a well-defined function.
 (b) State the definition of an isomorphism of groups.
 (c) Show that \(\phi\) is an isomorphism.

7. For each of the following, either indicate that the statement is true, or give a counterexample if the statement is false.
 (a) If \(G\) is a finite group of order \(n\), then every element \(x\) of \(G\) satisfies the equation \(x^n = e\).
 (b) If \(G\) is a finite group of order \(n\), then every element (except the identity \(e\)) has order \(n\).
 (c) If \(G\) is a finite group of order \(n\), then there is at least one element of \(G\) that has order \(n\).
 (d) If \(G\) is a finite group of order \(n\), and \(n\) is prime, then there is at least one element of \(G\) that has order \(n\).
 (e) If \(a\) and \(b\) are group elements of order \(m\) and \(n\), respectively, then the element \(ab\) has order \(\text{lcm}[m, n]\).

8. Prove ONE of the following theorems from the text.
 I. Every subgroup of a cyclic group is cyclic.
 II. If \(G\) is a cyclic group of order \(n\), then \(G\) is isomorphic to \(\mathbb{Z}_n\).
 III. Every group is isomorphic to a group of permutations.
1. Solve the following system of congruences:

\[2x \equiv 9 \pmod{15} \quad x \equiv 8 \pmod{11} \]

2. Find \([91]^{-1}_{501}\) (in \(\mathbb{Z}_{501}^\times\)).

3. Let \(\sigma = (2, 4, 9, 7)(6, 4, 2, 5, 9)(1, 6)(3, 8, 6) \in S_9\).
 (i) Write \(\sigma\) as a product of disjoint cycles.
 (ii) What is the order of \(\sigma\)?
 (iii) Compute \(\sigma^{-1}\).

4. Let \(G\) be a group.
 (a) State the definition of a subgroup of \(G\).
 (b) State a result that tells you which conditions to check when determining whether or not a subset of \(G\) is a subgroup of \(G\). Use this result in proving part (c).
 (c) Let \(H\) and \(K\) be subgroups of \(G\). Prove that \(H \cap K = \{g \in G \mid g \in H \text{ and } g \in K\}\) is a subgroup of \(G\).

5. (a) State the definition of a cyclic group.
 (b) Write out ONE of the following proofs from the text:

 I. Any subgroup of a cyclic group is cyclic.
 II. If \(G\) is a cyclic group of order \(n\), then \(G\) is isomorphic to \(\mathbb{Z}_n\).

6. Do ONE of the following problems.
 I. Find all subgroups of \(\mathbb{Z}_{11}^\times\), and give the lattice diagram which shows the inclusions between them.
 II. Show that the three groups \(\mathbb{Z}_6^\times\), \(\mathbb{Z}_9^\times\), and \(\mathbb{Z}_{18}^\times\) are isomorphic to each other.

7. Let \(G\) be the subgroup of \(\text{GL}_3(\mathbb{R})\) consisting of all matrices of the form

\[
\begin{bmatrix}
1 & a & b \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

such that \(a, b \in \mathbb{R}\).

Show that \(G\) is a subgroup of \(\text{GL}_3(\mathbb{R})\).

8. Show that the group \(G\) in problem 7 is isomorphic to the direct product \(\mathbb{R} \times \mathbb{R}\).
1. (20 pts) Find \(\gcd(980, 189) \) and express it as a linear combination of 980 and 189.

2. (20 pts)
 (a) Is \(7^{123} + 1 \) divisible by 3?
 (b) What is the last digit in the decimal expansion of \(4^{123} \)?

3. (20 pts) Let \(\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 5 & 6 & 3 & 1 & 4 & 7 & 2 \end{pmatrix} \) and \(\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 1 & 2 & 6 & 5 & 4 & 3 \end{pmatrix} \).
 (a) Write \(\sigma \), \(\tau \), \(\sigma \tau \), and \(\tau \sigma \) as products of disjoint cycles.
 (b) Find the order of each of \(\sigma \), \(\tau \), \(\sigma \tau \), and \(\tau \sigma \).

4. (20 pts) Define \(f : \mathbb{Z}_n \rightarrow \mathbb{Z}_m \) by \(f([x]_n) = [kx]_m \). Show that the formula \(f \) defines a function if and only if \(m \mid kn \). Find conditions on \(n, m, k \) that determine when \(f \) is a one-to-one correspondence.

5. (20 pts) Let \(G \) be a group and let \(H \) be a subgroup of \(G \). For elements \(x, y \in G \), define \(x \sim y \) if \(y^{-1}x \in H \). Check that \(\sim \) defines an equivalence relation on \(G \).

6. (25 pts)
 (a) Define the following terms: group; cyclic group; order of an element of a group.
 (b) State the following theorems: Lagrange’s theorem (about the order of a subgroup); Cayley’s theorem (about groups of permutations).

7. (25 pts) Let \(G \) be any cyclic group. Prove that \(G \) is isomorphic to either \(\mathbb{Z} \) or \(\mathbb{Z}_n \), for some positive integer \(n \).

8. (20 pts)
 (a) Show that \(\mathbb{Z}_5^x \) is isomorphic to \(\mathbb{Z}_{10}^x \).
 (b) Show that \(\mathbb{Z}_{30}^x \) is not isomorphic to \(\mathbb{Z}_{24}^x \).

9. (30 pts) Let \(G \) and \(G' \) be groups, and let \(\phi : G \rightarrow G' \) be a function (not required to be either one-to-one or onto) such that \(\phi(ab) = \phi(a)\phi(b) \) for all \(a, b \in G \).
 (a) Let \(e \) and \(e' \) denote the identity element of \(G \) and \(G' \). Show that \(\phi(e) = e' \), and that \(\phi(g^{-1}) = (\phi(g))^{-1} \) for all \(g \in G \).
 (b) Show that the subset \(\{ g \in G \mid \phi(g) = e' \} \) is a subgroup of \(G \).
 (c) Show that the subset \(\{ y \in G' \mid y = \phi(x) \text{ for some } x \in G \} \) is a subgroup of \(G' \).
1. Let a and b be nonzero integers. Prove that $(a, b) = 1$ if and only if $\gcd(a + b, ab) = 1$.

2. Solve the following system of congruences:

 $$2x \equiv 7 \pmod{15} \quad 3x \equiv 5 \pmod{14}$$

3. Let G be any cyclic group. Prove that G is isomorphic to either \mathbb{Z} or \mathbb{Z}_n, for some positive integer n.

4. Let G be a group and let H be a subgroup of G. For any element $a \in G$, define

 $$Ha = \{ x \in G \mid x = ha \text{ for some } h \in H \}.$$

 Prove that the collection of all such subsets partitions G.

5. Let $\sigma = (2, 4, 9, 7, 6, 4, 2, 5, 9)(1, 6)(3, 8, 6) \in S_9$.
 (i) Write σ as a product of disjoint cycles.
 (ii) What is the order of σ?
 (iii) Compute σ^{-1}.

6. Let G be a group. Show that G is abelian if and only if $(ab)^{-1} = a^{-1}b^{-1}$ for all $a, b \in G$.

7. If a nontrivial group G has no proper nontrivial subgroups, prove that G is cyclic and that the order of G is a prime number.

8. Let G be any group. In the proof of Cayley’s theorem, for each $a \in G$ a function $\lambda_a : G \to G$ is defined by $\lambda_a(x) = ax$, for all $x \in G$.
 (a) Prove that λ_a is a permutation of G, for any $a \in G$.
 (b) Prove that $\{\lambda_a \mid a \in G\}$ is a subgroup of Sym(G).

9. Let G be a group and let H and K be subgroups of G. Prove that $H \cap K$ is a subgroup of G.

10. Define the following terms: one-to-one function; onto function; group; cyclic group.
1. (30)
 (a) State the Division Algorithm.
 (b) State the definition of one-to-one function; onto function.
 (c) State the definition of a group.

2. (20) Let G, G' be groups, and let $\phi : G \to G'$ be a function such that $\phi(ab) = \phi(a)\phi(b)$ for all $a, b \in G$.
 Prove that
 $$K = \{x \in G \mid \phi(x) = e\}$$
 is a subgroup of G.

3. (15) Define a function ϕ from the multiplicative group C^\times of complex numbers into itself by $\phi(a+bi) = a - bi$.
 Prove that ϕ is an isomorphism.

4. (35)
 (a) State the proposition which gives the solution to all linear congruences of the form $as \equiv b \pmod{n}$.
 (b) State the proposition which tells how to compute the order of any element in a cyclic group of order n.
 (c) For the special case of the cyclic group \mathbb{Z}_n, show that the result in (a) can be used to prove (b).

5. (30) Let N be a subgroup of the group G.
 (a) For $a, b \in G$ define $a \sim b$ if $ab^{-1} \in N$. Show that \sim defines an equivalence relation.
 (b) Assume that $gxg^{-1} \in N$ for all $x \in N$ and $g \in G$. Prove that if $a \sim b$ and $b \sim d$, then $ab \sim cd$.
 Hint: Show that if $ac^{-1} \in N$ and $bd^{-1} \in N$, then $ac^{-1}bd^{-1}c^{-1} \in N$.

6. (25) State and prove Lagrange’s Theorem. OR State and prove Cayley’s Theorem.

7. (25) Let G be the set of matrices of the form $\begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix}$, where $a, b, c \in \mathbb{Z}_2$. Prove that G is a group.
 Is it abelian? Is it cyclic? Compute the order of each of its elements.

8. (20) Prove that if $\gcd(m, n) = 1$, then $n^{\varphi(m)} + m^{\varphi(n)} \equiv 1 \pmod{mn}$.
Each problem is worth 25 points.

1. Write out the definitions of the following concepts:
 (a) group
 (b) cyclic group
 (c) one-to-one function; onto function
 (d) greatest common divisor of two integers.

2. Write out the statements of the following theorems:
 (a) The Division Algorithm
 (b) Lagrange’s Theorem (on the order of a subgroup of a finite group)
 (c) The theorem which gives $\varphi(n)$ in terms of the prime factorization of n.

3. Write out the proof of the theorem which states that every subgroup of a cyclic group is cyclic.

4. Write out a proof of Cayley’s Theorem, which states that every group is isomorphic to a group of permutations.

5. Let a, b, d, m, n be integers. If $\gcd(a, b) = d$ and $an + bm = d$, then prove that $\gcd(n, m) = 1$.

6. Let $\sigma = (2, 8, 5)(5, 7, 8)(3, 8)(8, 6)$ in S_9. Write σ as a product of disjoint cycles. What is the order of σ? Compute σ^{-1}.

7. For real numbers a, b we define $a \sim b$ if $a - b$ is an integer. Show that \sim is an equivalence relation of the set of real numbers.

8. Show that the set $G = \left\{ \begin{bmatrix} 1 & x \\ 0 & 1 \end{bmatrix} \right| x \in \mathbb{R} \}$ is a group under matrix multiplication, and show that G is isomorphic to \mathbb{R}, the group of all real numbers under addition.