1. (a) [5 pts] Complete the following statement of part of Theorem 1.3.5:
 (i) Let a, b and $n > 1$ be integers. The congruence $ax \equiv b \pmod{n}$ has a solution if and only if
 (ii) If there is a solution, then how many distinct solutions are there modulo n?

 (b) [15 pts] Find all solutions to the congruence $91x \equiv 21 \pmod{105}$.

2. (a) [10 pts] Solve the system of congruences

 \[
 x \equiv 5 \pmod{25} \\
 x \equiv 23 \pmod{32}.
 \]

 (b) [10 pts] Prove that if the system

 \[
 x \equiv 1 \pmod{m} \\
 x \equiv 0 \pmod{n}
 \]

 has a solution, then m and n are relatively prime.

3. (a) [10 pts] If a and n are positive integers, explain what is meant by the notations $[a]_n$ and $[a]_n^{-1}$. State necessary and sufficient conditions on a and n which guarantee the existence of $[a]_n^{-1}$.

 (b) [10 pts] Compute $[75]_{112}^{-1}$ (in \mathbb{Z}_{112}).

4. (a) [5 pts] Complete this statement of the division algorithm: For any integers a and b, with $b > 0$, there exist

 (b) [15 pts] Use the division algorithm to prove the part of Theorem 1.1.4 which states that if I is a nonempty set of integers that is closed under addition and subtraction, then I contains a positive integer b such that $b \mid n$ for all n in I.

5. (a) [10 pts] Prove Proposition 1.2.3 (a), which states that if (a, b, c) are integers such that $b \mid ac$, then $b \mid (a, b) \cdot c$.

 (b) [10 pts] Prove or disprove the following statement, for integers $0 < a < b < c$:
 \[
 \gcd(a + b, c) = 1 \iff \gcd(b - a, c) = 1.
 \]