1. (a) State the division algorithm. (b) State the Chinese remainder theorem.
 (c) Solve the following system of congruences: \(x \equiv 13 \pmod{25}\) \(x \equiv 9 \pmod{18}\)
 To work with the smaller modulus, start with the equation from the larger one. Write \(x = 13 + 25q\) for some \(q \in \mathbb{Z}\), and substitute to get \(13 + 25q \equiv 9 \pmod{18}\), which reduces to \(7q \equiv 14 \pmod{18}\). Now \(\gcd(7, 18) = 1\), so we can cancel 7 from both sides. (Or, by trial and error you can see that multiplying both sides by -5 will give you \(-35q \equiv q \pmod{18}\).) In any case, you should get \(q \equiv 2 \pmod{18}\). This final answer is \(x \equiv 63 \pmod{25 \cdot 18}\).

2. (a) Use the Euclidean algorithm to find \([8]^{-1}\) in \(\mathbb{Z}_{27}\).
\[
\begin{bmatrix}
1 & 0 & 27 \\
0 & 1 & 8 \\
\end{bmatrix} \sim \begin{bmatrix}
1 & -3 & 3 \\
0 & 1 & 8 \\
\end{bmatrix} \sim \begin{bmatrix}
1 & -3 & 3 \\
0 & -2 & 7 \\
\end{bmatrix} \sim \begin{bmatrix}
3 & -10 & 1 \\
-2 & 7 & 2 \\
\end{bmatrix},
\]
so \([8]^{-1}_{27} = [-10]_{27} = [17]_{27}\).

(b) Find \(\varphi(27)\) and list all of its positive divisors. \(\varphi(27) = 27 \cdot \frac{2}{3} = 18\) since \(27 = 3^3\).
 The positive divisors of 18 are 1, 2, 3, 6, 9, 18.

(c) Find the order of \([8]_{27}\) in the group \(\mathbb{Z}_{27}\). \(8^2 = 64 \equiv 10 \pmod{27}\) \(8^3 = 8 \cdot 10 \equiv -1 \pmod{27}\)
 \(8^6 = (8^3)^2 \equiv 1 \pmod{27}\) From part (b) the possible orders are 2, 3, 6, 9, 18, so \([8]_{27}\) has order 6.

3. Let \(\sigma = (3, 6, 8)(1, 9, 4, 3, 2, 7, 6, 8, 5)(2, 3, 9, 7) \in S_9\).
 (a) Write \(\sigma\) as a product of disjoint cycles. \(\sigma = (1, 9, 8, 5)(3, 4, 6)\)
 (b) Is \(\sigma\) even or odd? \(\sigma = (1, 9)(9, 8)(8, 5)(3, 4)(4, 6)\) so it is an odd permutation.
 (c) What is the order of \(\sigma\) in \(S_9\)? \(\text{lcm}(4, 3) = 12\) \(\sigma^{-1} = (1, 5, 8, 9)(3, 6, 4)\)

4. (a) State the definition of an equivalence relation. (b) State the definition of a subgroup of a group.
 (c) Let \(G\) be a group, and let \(H\) be a subgroup of \(G\). For \(x, y \in G\), define \(x \sim y\) if \(x^{-1}y \in H\). Prove that \(\sim\) defines an equivalence relation on \(G\). Solution: This is similar to the proof of Lemma 3.2.9.

5. (a) State the definition of a one-to-one function. (b) State the definition of an onto function. (c) State the definition of an isomorphism of groups. (d) Let \(G_1, G_2\) be groups and let \(H_2\) be a subgroup of \(G_2\). Prove that if \(\phi : G_1 \rightarrow G_2\) is an isomorphism, then \(H_1 = \{g \in G_1 \mid \phi(g) \in H_2\}\) is a subgroup of \(G_1\).
 Closure: If \(a, b \in H_1\), then \(\phi(a), \phi(b) \in H_2\), so \(ab \in H_1\) since \(\phi(ab) = \phi(a)\phi(b) \in H_2\) (because \(\phi\) is a group isomorphism and \(H_2\) is closed).
 Identity: We have \(e \in H_1\) since \(\phi(e) = e \in H_2\) because \(\phi\) is a group isomorphism and any subgroup contains \(e\).
 Inverses: If \(a \in H_1\), then \(\phi(a) \in H_2\), so \(\phi(a)^{-1} \in H_2\) since \(H_2\) contains inverses of its elements. But then \(\phi(a^{-1}) = (\phi(a))^{-1} \in H_2\) since \(\phi\) is a group isomorphism, and so \(a^{-1} \in H_1\).

6. (a) Let \(H\) and \(K\) be subgroups of the group \(G\). Prove that \(HK\) is a subgroup of \(G\) if and only if \(KH \subseteq HK\).
 I proved this proposition in class; it should be in your class notes.
 (b) Let \(G = Z_{10} \times Z_{16}\), let \(H = \langle(3, 3)\rangle\) and let \(K = \langle(3, 7)\rangle\). List the elements of \(HK\).
 \(H = \{(1, 1), (3, 3), (9, 9), (7, 7)\}\) and \(K = \{(1, 1), (3, 7), (9, 9), (7, 3)\}\).
 \(HK = \{(1, 1), (3, 3), (9, 9), (7, 7), (3, 7), (9, 1), (1, 7), (1, 9)\}\)

7. (a) State the definition of a cyclic group. (b) Write out ONE of the following proofs from the text:
 I. Any subgroup of a cyclic group is cyclic. II. If \(G\) is a cyclic group of order \(n\), then \(G\) is isomorphic to \(Z_n\).

8. (a) State the definition of the order of an element. (b) Prove or disprove: If \(a, b\) are elements of the group \(G\) with \(o(a) = m\) and \(o(b) = n\), where \(m, n\) are positive integers, then \(o(ab) \leq \text{lcm}(m, n)\).
 The result is false in general. For example, in \(S_3\), let \(a = (1, 2)\) and \(b = (2, 3)\). Then \(m = 2\) and \(n = 2\), so \(\text{lcm}(m, n) = 2\), but \(ab = (1, 2)(2, 3) = (1, 2, 3)\). In this example \(o(ab) = 3 > 2 = \text{lcm}(m, n)\).
 If \(ab = ba\) and \(\text{lcm}(m, n) = k\), then \(k = mq\) and \(k = np\) for some \(q, p \in \mathbb{Z}\). Then \((ab)^k = a^k b^k = a^{mq} b^{np} = (a^m)^q (b^n)^p = e\), and so \(o(ab) \mid \text{lcm}(m, n)\). Note: it can be proved that if \(\gcd(m, n) = 1\), then \(o(ab) = mn\).