6.1: 1 (d). Show that $\sqrt{2}+\sqrt{3}$ is algebraic over \mathbb{Q}.

Solution: Let $\alpha = \sqrt{2}+\sqrt{3}$. Then $\alpha^2 = 2 + \sqrt{3}$ and so $\alpha^2 - 2 = \sqrt{3}$. Hence $\alpha^4 - 4\alpha^2 + 4 = (\alpha^2 - 2)^2 = (\sqrt{3})^2 = 3$. Thus $\alpha^4 - 4\alpha^2 + 1 = 0$ and so $\alpha = \sqrt{2}+\sqrt{3}$ is a root of $f(x) = x^4 - 4x^2 + 1$.

6.1: 1 (f). Show that $\sqrt[6]{2}+\sqrt[6]{2}$ is algebraic over \mathbb{Q}.

Solution: Let $\alpha = \sqrt[6]{2}+\sqrt[6]{2}$. Then $\alpha - \sqrt[6]{2} = \sqrt[6]{2}$. Hence $\alpha^3 - 3\sqrt[6]{2}a^2 + 6\sqrt[6]{2} - 2\sqrt[6]{2} = (\alpha - \sqrt[6]{2})^3 = (\sqrt[6]{2})^3 = 2$. Therefore $\alpha^3 + 6\alpha - 2 = 3\sqrt[6]{2}a^2 + 2\sqrt[6]{2} = (3\alpha^2 + 2\sqrt[6]{2})$, and so $\alpha^6 + 12\alpha^4 - 4\alpha^3 + 36\alpha^2 - 24\alpha + 4 = (\alpha^3 + 6\alpha - 2)^2 = (3\alpha^2 + 2\sqrt[6]{2})^2 = (9\alpha^4 + 12\alpha^2 + 4) + 2 = 18\alpha^4 + 24\alpha^2 + 8$. Hence $\alpha^6 - 6\alpha^4 - 4\alpha^3 + 12\alpha^2 - 24\alpha - 4 = 0$ and so $\alpha = \sqrt[6]{2}+\sqrt[6]{2}$ satisfies $f(x) = x^6 - 6x^4 - 4x^3 + 12x^2 - 24x - 4$.

6.1: 3 (a). Show that $f(x) = x^3 + 3x + 3$ is irreducible over \mathbb{Q}.

Solution: Eisenstein’s irreducibility criterion is satisfied for the prime $p = 3$.

6.1: 3 (b). Let u be a root of $f(x)$. Express u^{-1} and $(1+u)^{-1}$ in the form $a + bu + cu^2$, where $a, b, c \in \mathbb{Q}$.

Solution: Since $x^3 + 3x + 3 = x(x^2 + 3) + 3$, we have $1 = \frac{1}{3}(x^3 + 3x + 3) - \frac{1}{3}x(x^2 + 3)$. Thus $u^{-1} = -1 - \frac{1}{3}u^2$. We also have $x^3 + 3x + 3 = (x + 1)(x^2 - x + 4) - 1$, and so $1 = (x + 1)^3$. (Thus $(1 + u)^{-1} = 4 - u + u^2$.)

6.1: 4. Show that the intersection of any collection of subfields of a given field is again a subfield.

Comments: The main problem is with notation. You can’t assume that you have a finite set; in fact, you cannot assume that the set is countable. You need to assume that the fields are indexed by some set I.

Let $\{F_\gamma \mid \gamma \in I\}$ be a collection of subfields of K. Set $F = \bigcap_{\gamma \in I} F_\gamma = \{x \in K \mid x \in F_\gamma \forall \gamma \in I\}$. Then we need to show that F is a field, and the proof is quite routine.

Note that you do not need to use this notation. For example, to check closure under addition and multiplication, you can simply say let x, y belong to the intersection of the subfields. Then x belongs to each subfield, and so does y, so $x + y$ and xy must belong to each subfield. Therefore $x + y$ and xy belong to the intersection of all of the subfields. The rest of the proof is similar.

6.2: 1 (d). Find the degree and a basis for the field extension $\mathbb{Q}(\sqrt{2}, \sqrt[6]{2})$ over \mathbb{Q}.

Solution: Since $\sqrt[6]{2}$ satisfies $f(x) = x^3 - 2$, and $f(x)$ is irreducible over \mathbb{Q}, we have $[\mathbb{Q}(\sqrt[6]{2}) : \mathbb{Q}] = 3$. Similarly, $[\mathbb{Q}(\sqrt{2}) : \mathbb{Q}] = 2$ since the minimal polynomial of $\sqrt{2}$ over \mathbb{Q} is $x^2 - 2$. Corollary 6.2.6 implies that $[\mathbb{Q}(\sqrt{2}, \sqrt[6]{2}) : \mathbb{Q}] \leq 6$, but since this degree is divisible by both 2 and 3, it must be equal to 6. The proof of Theorem 6.2.4 then shows that we can use as a basis the products of the elements $1, \sqrt{2}, \sqrt[6]{2}$ in a basis for $\mathbb{Q}(\sqrt{2})$ over \mathbb{Q}, and the elements $1, \sqrt{2}$ which form a basis for $\mathbb{Q}(\sqrt[6]{2}, \sqrt{2})$ over $\mathbb{Q}(\sqrt{2})$. Thus $\{1, \sqrt{2}, \sqrt[6]{2}, \sqrt{2}, \sqrt{2} \sqrt[6]{2}, \sqrt[6]{2} \sqrt{2} \}$ is a basis for $\mathbb{Q}(\sqrt{2}, \sqrt[6]{2})$ over \mathbb{Q}.

6.2: 3. Let F be a finite extension of K such that $[F : K] = p$, a prime number. If $u \in F$ but $u \notin K$, show that $F = K(u)$.

Solution: Since $K \subseteq K(u) \subseteq F$, by Theorem 6.2.4 we have $[F : K] = [F : K(u)] [K(u) : K]$. Because $[F : K]$ is prime, either $[K(u) : K] = 1$ or $[F : K(u)] = 1$. The first case implies $K(u) = K$ and contradicts $u \notin K$. Therefore $[F : K(u)] = 1$ and so $F = K(u)$.

6.2: 6. For any positive integers a, b, show that $\mathbb{Q}(\sqrt{a} + \sqrt{b}) = \mathbb{Q}(\sqrt{a}, \sqrt{b})$.

Solution: If $a = b$, then $\mathbb{Q}(\sqrt{a}) = \mathbb{Q}(\sqrt{b})$, and so we may assume that $a \neq b$. Since $\sqrt{a}, \sqrt{b} \in \mathbb{Q}(\sqrt{a}, \sqrt{b})$, we have $\sqrt{a} + \sqrt{b} \in \mathbb{Q}(\sqrt{a} + \sqrt{b})$, and so $\mathbb{Q}(\sqrt{a} + \sqrt{b}) \subseteq \mathbb{Q}(\sqrt{a}, \sqrt{b})$. Since $(\sqrt{a} + \sqrt{b})(\sqrt{a} - \sqrt{b})/(a - b) = 1$, we have $\sqrt{a} - \sqrt{b} = (a - b)/(\sqrt{a} + \sqrt{b})^{-1} \in \mathbb{Q}(\sqrt{a} + \sqrt{b})$ and so $\sqrt{a} = 1/2((\sqrt{a} + \sqrt{b}) + (\sqrt{a} - \sqrt{b})) \in \mathbb{Q}(\sqrt{a} + \sqrt{b})$ and $\sqrt{b} = (\sqrt{a} + \sqrt{b}) - \sqrt{a} \in \mathbb{Q}(\sqrt{a} + \sqrt{b})$. Hence $\mathbb{Q}(\sqrt{a}, \sqrt{b}) \subseteq \mathbb{Q}(\sqrt{a} + \sqrt{b})$, and so $\mathbb{Q}(\sqrt{a} + \sqrt{b}) = \mathbb{Q}(\sqrt{a}, \sqrt{b})$.