Part A

1. Let F be a field. In a brief paragraph write out the sequence of propositions and theorems necessary to prove that $F[x_1, \ldots, x_n]$ is a unique factorization domain. (No proofs are necessary.)

2. (a) State the definition of a prime ideal of a commutative ring.
 (b) Let R and S be commutative rings. Show that any prime ideal of the direct sum $R \oplus S$ must have the form $P \oplus S$ for a prime ideal P of R or $R \oplus P$ for a prime ideal P of S.

3. Let D be an integral domain with quotient field $Q(D)$, and let P be a prime ideal of D.
 (a) State the definition of the localization D_P of D at P.
 (b) Prove that if J is any proper ideal of D_P, then there exists an ideal I of D with $I \subseteq P$ such that $J = IP$.

Part B

4. Let R be a ring and let M be a left R-module.
 (a) State the definition of Ann(M), and show that it is an ideal of R.
 (b) State the definition of a faithful module.
 (c) Prove that M can be thought of as a faithful $R/\text{Ann}(M)$-module.

5. (a) State the definition of a simple module.
 (b) Show that RM is a simple module if and only if $Rm = M$, for each $0 \neq m \in M$.
 (c) Prove Schur's lemma, which states that if RM is a simple module that $\text{End}_R(M)$ is a division ring.

6. (a) State the definition of an idempotent element. What does it mean to say that a finite set of idempotent elements is an orthogonal set?
 (b) Show that R is a direct sum of left ideals A_1, \ldots, A_n if and only if there exists a set e_1, \ldots, e_n of orthogonal idempotent elements of R such that $A_i = Re_i$ for $1 \leq j \leq n$ and $e_1 + \cdots + e_n = 1$.