Universal localization at semiprime Goldie ideals

John A. Beachy
Northern Illinois University
UNAM
23/05/2017
If R is a commutative Noetherian ring and $P \subseteq R$ is a prime ideal, then a ring R_P and ring homomorphism $\lambda : R \to R_P$ can be constructed for which every element of the complement $C(P)$ of P is inverted by λ.

The construction uses ordered pairs (c, a) (think $c^{-1}a$) where $c \in C(P)$ and $a \in R$, subject to the equivalence relation $(c, a) \sim (d, b)$ if there exists $c' \in C(P)$ with $c'(ad - bc) = 0$.

The ideal PR_P generated by P is the unique maximal ideal of R_P.
David Eisenbud, *Commutative Algebra with a View Toward Algebraic Geometry*, p. 57:

“A local ring is a ring with just one maximal ideal. Every since Krull’s paper (1938) local rings have occupied a central position in commutative algebra. The technique of localization reduces many problems in commutative algebra to problems about local rings. This often turns out to be extremely useful. Most of the problems with which commutative algebra has been successful are those that can be reduced to the local case.”
Properties of R_P:

(1). $\lambda : R \to R_P$ is universal with respect to the property that if $c \in C(P)$ then $\lambda(c)$ has an inverse in R_P.

That is, if $\phi : R \to T$ inverts $C(P)$, then there exists a unique ring homomorphism ϕ' such that the following diagram commutes.
Properties of R_P:

(2). The ideal PR_P is the unique maximal ideal of R, and R_P/PR_P is isomorphic to $Q(R/P)$, the quotient field of R/P.

(3). The functor $R_P \otimes_R -$: R–Mod $\rightarrow R_P$–Mod takes short exact sequences to short exact sequences.

(4). For any R-module M, the kernel of the mapping $M \rightarrow R_P \otimes_R M$ is the $C(P)$-torsion submodule $\{m \in M \mid cm = 0$ for some $c \in C(P)\}$.
In a noncommutative ring R an ideal P is prime if $AB \subseteq P$ implies $A \subseteq P$ or $B \subseteq P$, for all ideals A, B of R.

Example 1. Let $R = \begin{bmatrix} \mathbb{Z} & \mathbb{Z} \\ \mathbb{Z} & \mathbb{Z} \end{bmatrix}$ and $P = \begin{bmatrix} 2\mathbb{Z} & 2\mathbb{Z} \\ 2\mathbb{Z} & 2\mathbb{Z} \end{bmatrix}$. Then P is prime since the ideals of R are in one-to-one correspondence with the ideals of the \mathbb{Z}.

Note that $R/P \cong \begin{bmatrix} \mathbb{Z}/2\mathbb{Z} & \mathbb{Z}/2\mathbb{Z} \\ \mathbb{Z}/2\mathbb{Z} & \mathbb{Z}/2\mathbb{Z} \end{bmatrix}$. This factor ring has divisors of zero, but at least it is a full matrix ring over a field.

The logical candidate for a localization of R at P is $\begin{bmatrix} \mathbb{Z}_{(2)} & \mathbb{Z}_{(2)} \\ \mathbb{Z}_{(2)} & \mathbb{Z}_{(2)} \end{bmatrix}$, which can be constructed by inverting all scalar matrices with an odd entry.
If R is a subring of Q, then R is a *left order* in Q if
(i) each $c \in R$ that is not a divisor of zero has an inverse in Q, and
(ii) each $q \in Q$ can be written in the form $c^{-1}a$, for $a, c \in R$, where c is not a divisor of zero.

To put the product ac^{-1} into standard form we need to be able to find a_1 and c_1 with $ac^{-1} = c_1^{-1}a_1$, or $c_1 a = a_1 c$. This is the *left Ore condition*. Then $c^{-1}a \cdot d^{-1}b$ can be put into standard form by finding a_1 and d_1 with $d_1 a = a_1 d$, so that $ad^{-1} = d_1^{-1}a_1$ and

$$(c^{-1}a)(d^{-1}b) = c^{-1}(ad^{-1})b = c^{-1}(d_1^{-1}a_1)b$$

$$= (c^{-1}d_1^{-1})(a_1 b) = (d_1 c)^{-1}(a_1 b).$$
Goldie’s theorem (1958) shows that R is a left order in a full ring of $n \times n$ matrices over a skew field if and only if R is a prime ring with ACC on left annihilators and finite uniform dimension. (These finiteness conditions always hold when R is left Noetherian.) This ring of quotients is called the \textit{classical ring of left quotients of R} and is denoted by $Q_{cl}(R)$.

We are now ready to look at noncommutative localization. We focus on prime ideals of R for which $Q_{cl}(R/P)$ exists. We would like to invert $C(P)$, which we must now define as the set of elements that are regular modulo P (not as the complement of P). Equivalently, these are the elements inverted by the canonical homomorphism $R \rightarrow R/P \rightarrow Q_{cl}(R/P)$.

In Example 1, where P is the set of 2×2 matrices with even entries, $C(P)$ is the set of matrices whose determinant is odd.
If P is a prime Goldie ideal for which $C(P)$ satisfies the left Ore condition and is left reversible (if $ac = 0$ for $c \in C(P)$, then $c' a = 0$ for some $c' \in C(P)$) then the construction of a localization R_P goes through much as in the commutative case, and all four of the properties listed above still hold.

Even in very nice cases the left Ore condition may not hold.

Example 2. \[R = \begin{bmatrix} \mathbb{Z} & 0 \\ \mathbb{Z} & \mathbb{Z} \end{bmatrix}, \quad P_1 = \begin{bmatrix} 2\mathbb{Z} & 0 \\ \mathbb{Z} & \mathbb{Z} \end{bmatrix}, \quad P_2 = \begin{bmatrix} \mathbb{Z} & 0 \\ \mathbb{Z} & 2\mathbb{Z} \end{bmatrix}. \]

Then $R/P_i \cong \mathbb{Z}/2\mathbb{Z}$ and so $Q_{cl}(R/P_i) = R/P_i$ is a field, making P_i as nice a prime Goldie ideal as possible.
The ideal P_1 satisfies the left Ore condition:

given $a = \begin{bmatrix} a_{11} & 0 \\ a_{21} & a_{22} \end{bmatrix} \in R$ and $c = \begin{bmatrix} c_{11} & 0 \\ c_{21} & c_{22} \end{bmatrix} \in C(P_1)$ we need to solve $c' a = a' c$ with $c' \in C(P)$.

\[
\begin{bmatrix} c_{11} & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} a_{11} & 0 \\ a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} a_{11} & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} c_{11} & 0 \\ c_{21} & c_{22} \end{bmatrix}.
\]

The ideal P_2 does not satisfy the left Ore condition:

given $\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \in R$ and $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \in C(P_2)$ the equation

\[
\begin{bmatrix} c_{11} & 0 \\ c_{21} & c_{22} \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} a_{11} & 0 \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}
\]

has no solution with c_{22} odd.
In the absence of the left Ore condition we could focus on the last two conditions that hold in the commutative case.

(3). The functor $R_P \otimes_{R} -$: R–Mod $\rightarrow R_P$–Mod takes short exact sequences to short exact sequences.

(4). For any R-module M, the kernel of the mapping $M \rightarrow R_P \otimes_{R} M$ is the $C(P)$-torsion submodule

$\{ m \in M \mid cm = 0 \text{ for some } c \in C(P) \}$.

The $C(P)$-torsion submodule is changed to $\{ m \in M \mid \forall r \in R, \ crm = 0 \text{ for some } c \in C(P) \}$. This determines a closure operator, a module of quotients, and an exact functor into an abelian category consisting of these quotient modules.
This construction can be done more generally relative to any torsion theory, and there is a large body of work studying it. The best answer to its origin probably lies in Gabriel’s thesis *Des catégories abéliennes*, Bull. Soc. Math. France **90** 323–448, published in 1962.

In the case of a prime Goldie ideal, this quotient functor does produce a ring $R_{C(P)}$, but properties (1) and (2) from the commutative case may be lost.

For the prime ideal P_2 in Example 2 the torsion-theoretic construction produces $R_{C(P_2)} = \begin{bmatrix} \mathbb{Z}(2) & \mathbb{Z}(2) \\ \mathbb{Z}(2) & \mathbb{Z}(2) \end{bmatrix}$, not a bad answer, but its unique maximal ideal is not closely connected to P_2.
We now turn to properties (1) and (2) of the commutative case:

(1). \(\lambda : R \to R_P \) is universal with respect to the property that if \(c \in C(P) \) then \(\lambda(c) \) has an inverse in \(R_P \).

(2). The ideal \(PR_P \) is the unique maximal ideal of \(R \), and \(R_P/PR_P \) is isomorphic to \(Q(R/P) \).

A ring satisfying (1) can be defined, but it may be the zero ring.

It’s convenient to generalize to a semiprime ideal \(S \) for which \(Q_{cl}(R/S) \) exists and is semisimple Artinian, i.e. for which \(R/S \) is a semiprime left Goldie ring. In this case we say that \(S \) is a semiprime Goldie ideal.
Definition of the universal localization

Let S be a semiprime Goldie ideal, and let $\Gamma(S)$ be the set of all square matrices inverted by the canonical mapping $R \to R/S \to Q_{cl}(R/S)$.

Definition (Cohn, 1973, Noetherian case)

The *universal localization* $R_{\Gamma(S)}$ of R at a semiprime Goldie ideal S is the ring universal with respect to inverting all matrices in $\Gamma(S)$.

That is, if $\phi : R \to T$ inverts all matrices in $\Gamma(S)$, then there exists a unique ring homomorphism ϕ' such that the following diagram commutes.

$$
\begin{array}{ccc}
R & \xrightarrow{\lambda} & R_{\Gamma(S)} \\
\downarrow{\phi} & & \downarrow{\phi'} \\
\cdot & & \cdot \\
\cdot & & \cdot \\
\cdot & & \cdot \\
\downarrow{\phi} & & \downarrow{\phi'} \\
T & & T
\end{array}
$$
Note: If S is left localizable, then $R_\Gamma(S)$ coincides with the Ore localization R_S defined via elements.

Theorem

Let S be a semiprime Goldie ideal of R.

(a) (Cohn, 1971) The universal localization of R at S exists.

(b) (Cohn, 1971) The canonical mapping $\lambda : R \to R_\Gamma(S)$ is an epimorphism in the category of rings.

(c) (1981) The ring $R_\Gamma(S)$ is flat as a right module over R if and only if S is a left localizable ideal.
Cohn’s construction showing that $R_{\Gamma(S)}$ exists:

For each n and each $n \times n$ matrix $[c_{ij}]$ in $\Gamma(S)$, take a set of n^2 symbols $[d_{ij}]$, and take a ring presentation of $R_{\Gamma(S)}$ consisting of all of the elements of R, as well as all of the elements d_{ij} as generators; as defining relations take all of the relations holding in R, together with all of the relations $[c_{ij}][d_{ij}] = I$ and $[d_{ij}][c_{ij}] = I$ which define all of the inverses of the matrices in $\Gamma(S)$.

Theorem (Cohn, 1971)

Each element of $R_{\Gamma(S)}$ is an entry in a matrix of the form $(\lambda(C))^{-1}$, for some $C \in \Gamma(S)$.
Theorem

Let S be a semiprime Goldie ideal of R.

(a) (Cohn, 1973) $R_{\Gamma(S)}$ modulo its Jacobson radical is naturally isomorphic to $Q_{cl}(R/S)$.

(b) (1981) $R_{\Gamma(S)}$ is universal with respect to the property in (a).

Theorem (1981)

Let R be left Noetherian, let N be the prime radical of R, and let $K = \ker(\lambda)$, for $\lambda : R \to R_{\Gamma(N)}$.

(a) The kernel K is the intersection of all ideals $I \subseteq N$ such that $C(N) \subseteq C(I)$.

(b) The ring R/K is a left order in a left Artinian ring, and $R_{\Gamma(N)}$ is naturally isomorphic to $Q_{cl}(R/K)$.
Symbolic powers

Definition

Let S be a semiprime Goldie ideal of R, with $\lambda : R \to R_\Gamma(S)$. The n^{th} symbolic power of S is $S^{(n)} = \lambda^{-1}(R_\Gamma(S)\lambda(S^n)R_\Gamma(S))$.

Theorem

If R is left Noetherian, then the following conditions hold for the symbolic powers of the semiprime ideal S.

(a) $S^{(n)}$ is the intersection of all ideals I such that $S^n \subseteq I \subseteq S$ and $C(S) \subseteq C(I)$.

(b) $C(S)$ is a left Ore set modulo $S^{(n)}$.

(c) $R_\Gamma(S)\lambda(S^n)R_\Gamma(S) = (J(R_\Gamma(S))^n$, for all $n > 0$.

(d) $R/S^{(n)}$ is an order in the left Artinian ring $R_\Gamma(S)/(J(R_\Gamma(S)))^n$.
Goldie’s localization

In two papers in 1967 and 1968, Goldie defined a localization at a prime ideal P of a Noetherian ring R by first factoring out the intersection $\cap_{n=1}^{\infty} P^{(n)}$ of the symbolic powers. He then took the inverse limit of the Artinian quotient rings $Q_{cl}(R/P^{(n)})$, and finally defined an appropriate subring of this inverse limit.

Theorem (1984)

Let P be a prime ideal of the Noetherian ring R. Then Goldie's localization of R at P is isomorphic to $R_{\Gamma(P)}/\bigcap_{n=1}^{\infty} J^n$, where J is the Jacobson radical of $R_{\Gamma(P)}$.
Some information about the kernel

Theorem (1976)

If $RK \subseteq S$ is finitely generated, with $SK = K$, then $K \subseteq \ker(\lambda)$.

Proof.

Let $K = \sum_{i=1}^{n} Rx_i$, for $x_1, \ldots, x_n \in R$. Since $K = SK$, we have $K = \sum_{i=1}^{n} Sx_i$. For $x = (x_1, \ldots, x_n)$ we have $x^t = Ax^t$, where the $n \times n$ matrix A has entries in S. Thus $(I_n - A)x^t = 0^t$. But $I_n - A$ is invertible modulo S, so it certainly belongs to $\Gamma(S)$. Therefore the entries of x must belong to $\ker(\lambda)$, and so $K \subseteq \ker(\lambda)$.

Corollary

$R_{\Gamma(P)}$ can be determined for a prime ideal of an hereditary Noetherian prime ring, since in HNP rings each prime ideal is either localizable or idempotent.
Example 2: \(R = \begin{bmatrix} \mathbb{Z} & 0 \\ \mathbb{Z} & \mathbb{Z} \end{bmatrix}, \quad P_2 = \begin{bmatrix} \mathbb{Z} & 0 \\ \mathbb{Z} & 2\mathbb{Z} \end{bmatrix}, \quad K = \begin{bmatrix} \mathbb{Z} & 0 \\ \mathbb{Z} & 0 \end{bmatrix} \).

Then \(K^2 = K \), so \(P_2 K = K \), and therefore \(K \subseteq \ker \lambda \), for \(\lambda : R \to R_{\Gamma(P_2)} \). It follows easily that \(K = \ker \lambda \) and \(R_{\Gamma(P_2)} \) is isomorphic to \(\mathbb{Z}(2) \).

An alternate approach: Recalling that \(P_1 = \begin{bmatrix} 2\mathbb{Z} & 0 \\ \mathbb{Z} & \mathbb{Z} \end{bmatrix} \), we can invert the scalar matrices in \(C(P_1 \cap P_2) \) to obtain \(R_{P_1 \cap P_2} \)

\[
\begin{bmatrix} \mathbb{Z}(2) & 0 \\ \mathbb{Z}(2) & \mathbb{Z}(2) \end{bmatrix}
\]

with maximal ideal \(\widehat{P}_2 = \begin{bmatrix} \mathbb{Z}(2) & 0 \\ \mathbb{Z}(2) & 2\mathbb{Z}(2) \end{bmatrix} \).

Factoring out \(\cap_{i=n}^{\infty} \widehat{P}_2^n \) yields \(R_{\Gamma(P_2)} \cong \mathbb{Z}(2) \).

This illustrates a two-step approach: use the Ore localization at a suitable semiprime ideal, followed by its universal localization, which in this case is just a factor ring.
Example 3. If $P_3 = \begin{bmatrix} \mathbb{Z} & 0 \\ \mathbb{Z} & 3\mathbb{Z} \end{bmatrix}$, then $R_\Gamma(P_1 \cap P_3) = \begin{bmatrix} \mathbb{Z}(2) & 0 \\ \mathbb{Q} & \mathbb{Z}(3) \end{bmatrix}$.

This ring is no longer Noetherian. Bill Blair and I had to work much harder to produce such an example for a prime ideal.

Recall that in a ring finitely generated as a module over its center, the \textit{clique} of a prime ideal P is the set of prime ideals with the same intersection down to the center of the ring.

\textbf{Theorem (2016, with Christine Leroux)}

If R is finitely generated as a module over its Noetherian center, and P is a prime ideal that does not contain the intersection of symbolic powers of any other prime ideal in the clique of P, then $R_\Gamma(P)$ is the homomorphic image of the Ore localization at the clique of P, and therefore it is Noetherian.
Some questions

Question: Are there conditions under which the kernel of $R \rightarrow R_{\Gamma(P)}$ is the intersection of the symbolic powers of P, as in the commutative case? Fully bounded Noetherian?

Question: Is there a natural class of rings for which the universal localization works well? In particular, are there (weak) finiteness conditions that might be preserved? Piecewise Noetherian?

Question: The “top” of $R_{\Gamma(P)}$ is well-behaved since $R/P^{(n)}$ is a left order in $R_{\Gamma(P)}/(J(R_{\Gamma(P)}))^n$. Is it possible to use universal localization to give new proofs of some results for modules over Noetherian rings? e.g. Stafford’s results on generating modules efficiently

\[e.g. \quad Q_{cl}(R/P) \otimes_R (M/PM) \cong R_{\Gamma(P)} \otimes_R M / J(R_{\Gamma(P)} \otimes_R M) \]
Future directions:

Universal localization of group rings. Some topologists have been interested in universal localization at the augmentation ideal.

Universal localization of additive categories.
Another construction of the universal localization

Let S be a semiprime Goldie ideal of R. Each element in the universal localization $R_{\Gamma(S)}$ has the form $\lambda(a)\lambda(C)^{-1}\lambda(b)^t$ for some $a, b \in R^n$ and some matrix $C \in \Gamma_n(S)$.

Instead of modeling elements of the form $c^{-1}a$ where $c \in C(S)$, via ordered pairs (c, a), we model elements of the form $q_{ij} = e_i C^{-1} e_j^t$, where $C \in \Gamma(S)$ and e_i, e_j are unit vectors.

Let X be a left R-module. To construct a module of quotients, consider ordered triples

$$(a, C, x^t)$$

where $a \in R^n$, $C \in \Gamma_n(S)$, and $x \in X^n$, for all positive integers n.
Model for addition: Suppose C, D are already invertible.

\[
\begin{bmatrix} a & b \\ C & 0 \\ 0 & D \end{bmatrix}^{-1} \begin{bmatrix} x^t \\ y^t \end{bmatrix} = \begin{bmatrix} a & b \\ C^{-1} & 0 \\ 0 & D^{-1} \end{bmatrix} \begin{bmatrix} x^t \\ y^t \end{bmatrix} = \begin{bmatrix} aC^{-1} & bD^{-1} \\ x^t \\ y^t \end{bmatrix} = aC^{-1}x^t + bD^{-1}y^t
\]

Definition

\[
(a : C : x^t) + (b : D : y^t) = \left(\begin{bmatrix} a & b \\ C & 0 \\ 0 & D \end{bmatrix} : \begin{bmatrix} x^t \\ y^t \end{bmatrix} \right)
\]

This is a commutative, associative binary operation.
Model for scalar multiplication: Suppose C, D are invertible.

\[
\begin{bmatrix}
a & 0 \\
0 & 0
\end{bmatrix}
\begin{bmatrix}
C & -r^t b \\
0 & D
\end{bmatrix}^{-1}
\begin{bmatrix}
0 \\
y^t
\end{bmatrix}
= \\
\begin{bmatrix}
aC^{-1} & aC^{-1} r^t b D^{-1} \\
0 & D^{-1}
\end{bmatrix}
\begin{bmatrix}
0 \\
y^t
\end{bmatrix}
= \\
aC^{-1} r^t \cdot b D^{-1} y^t
\]

Definition

\[(a : C : r^t) \cdot (b : D : y^t) = \left(\begin{bmatrix} a & 0 \end{bmatrix} : \begin{bmatrix} C & -r^t b \\ 0 & D \end{bmatrix} : \begin{bmatrix} 0 \\ y^t \end{bmatrix} \right) \]
The module of quotients

Theorem (1989)

(a) The above addition and multiplication define a ring of quotients $\Gamma^{-1}R$ and a module of quotients $\Gamma^{-1}X$.

(b) Each element of $\Gamma^{-1}R$ is an entry in the inverse of a matrix in $\Gamma(S)$.

Theorem (1989)

$\Gamma^{-1}R \cong R_{\Gamma(S)}$ and $\Gamma^{-1}X \cong R_{\Gamma(S)} \otimes_R X$.