WE SHALL assume that all rings under consideration are associative rings with identity, and that all modules are unital. We show that a ring R is a prime ring if and only if every nonzero torsionless left R-module is faithful. This result can be extended to characterize the prime ideals of a ring R in terms of its left R-modules.

With each left R-module RM is associated an ideal $\text{Ann}(M) = \{r \in R : rm = 0 \text{ for all } m \in M\}$, the annihilator of M. The module RM is called faithful if $\text{Ann}(M) = (0)$.

We may also define a left ideal $tr(M)$ associated with RM, the sum of the left ideals $f(m)$, for all R-homomorphisms $f \in \text{Hom}_R(M, R)$. For each $f \in \text{Hom}_R(M, R)$ and each $r \in R$, the function g defined by $g(m) = f(m)r$, for all $m \in M$, is also a member of $\text{Hom}_R(M, R)$. This can be used to show that in fact $tr(M)$ is an ideal of R.

The module RM is said to be torsionless if for each $0 \neq m \in M$ there exists $f \in \text{Hom}_R(M, R)$ such that $f(m) \neq 0$. It is clear that each left ideal of R is torsionless when considered as a left R-module.

Lemma. Let RM be torsionless. Then M is faithful $\iff \text{Ann}(tr(M)) = (0)$.

Proof. \Rightarrow. Suppose that RM is torsionless and faithful. Then $\text{Ann}(M) = (0)$, and for each $0 \neq r \in R$ there exists $m \in M$ such that $rm \neq 0$. Since M is torsionless there exists $f \in \text{Hom}_R(M, R)$ such that $f(rm) \neq 0$, and thus $f(m) \in tr(M)$ and $rf(m) \neq 0$. This shows that $\text{Ann}(tr(M)) = (0)$.

\Leftarrow. If $r \in \text{Ann}(M)$, then for each $m \in M$ and $f \in \text{Hom}_R(M, R)$ we must have $rf(m) = f(rm) = 0$. Thus $\text{Ann}(M) \subseteq \text{Ann}(tr(M))$, so $\text{Ann}(tr(M)) = (0)$ implies $\text{Ann}(M) = (0)$. Q.E.D.
A ring R is called a prime ring if for all ideals A, B of R, $A \cdot B = (0)$ implies $A = (0)$ or $B = (0)$. An ideal A of R, $A \neq R$, is called a prime ideal if the quotient ring R/A is a prime ring.

Theorem 1. The ring R is a prime ring \iff every non-zero torsionless left R-module is faithful.

Proof. \Rightarrow. Assume that R is a prime ring and let R^M be a non-zero torsionless left R-module. This implies that $tr(M) \neq 0$, and then $(\text{Ann}(tr(M))) \cdot (tr(M)) = (0)$. Because we have assumed that R is a prime ring, we must have $\text{Ann}(tr(M)) = (0)$, and it follows from the previous lemma that R^M is faithful.

\Leftarrow. Assume that every non-zero torsionless left R-module is faithful. If A, B are ideals of R and $B \neq (0)$, then R^B is a non-zero torsionless left R-module. By assumption, R^B is faithful so $A \cdot B = (0)$ implies $A \subseteq \text{Ann}(B) = (0)$. Thus for ideals A, B of R, $A \cdot B = (0)$ implies $A = (0)$ or $B = (0)$, and R is a prime ring. Q.E.D.

In order to generalize this result, it is convenient to adopt the following terminology.

Definition. Let R^M and R^N be non-zero left R-modules. If for each $0 \neq m \in M$ there exists $f \in \text{Hom}_R(M, N)$ such that $f(m) \neq 0$, then we will write $R^M > R^N$. If $R^M > R^N$ and $R^N > R^M$, then we will write $R^M \sim R^N$.

With this definition we note that R^M is a non-zero torsionless left R-module $\iff R^M > R^M$. If R^M is any module, then for each $m \in M$ there exists $f \in \text{Hom}_R(R, M)$ defined by $f(r) = rm$, for all $r \in R$, and since R has an identity, all R-homomorphisms from R to M are of this form. It is clear that $R(R/\text{Ann}(M)) > R^M$, and that $R^R > R^M \iff R^M$ is faithful. Thus Theorem 1 can be restated in the following form: The ring R is a prime ring if and only if $R^M > R^R \Rightarrow R^M \sim R^R$.

Suppose that $R^M > R^N$. If $r \notin \text{Ann}(M)$, then there exists $m \in M$ such that $rm \neq 0$, so there exists $f \in \text{Hom}_R(M, N)$ such that $f(rm) \neq 0$. Thus $rf(m) \neq 0$, which shows that $r \notin \text{Ann}(N)$, and so $R^M > R^N$ implies $\text{Ann}(N) \subseteq \text{Ann}(M)$.

If $R^M > R^N$ and $R^N > R^P$, then for $0 \neq m \in M$ there exists $f \in \text{Hom}_R(M, N)$ such that $f(m) \neq 0$. Since $R^N > R^P$, there exists
$g \in \text{Hom}_R(N,P)$ such that $g(f(m)) \neq 0$, and thus $RM > RP$. This also shows that $RM \sim RN = RP \Rightarrow RM \sim RP$.

Theorem 2. Let A be an ideal of R, $A \neq R$. Then the following are equivalent:

(i) A is a prime ideal;

(ii) $RM > R(R/A) \Rightarrow RM \sim R(R/A)$.

Proof. If $RM > R(R/A)$, then $A = \text{Ann}(R/A) \subseteq \text{Ann}(M)$, and M is a left R/A-module. Every R-homomorphism from M to R/A is also an R/A-homomorphism, so $R_A M > R_A(R/A)$. Conversely, every left R/A-module can be regarded as a left R-module, and $R_A M > R_A(R/A) \Rightarrow RM \sim R(R/A)$. The theorem then follows immediately from the restatement of Theorem 1, since, by definition, A is a prime ideal if and only if R/A is a prime ring.

Theorem 3. For a module RP the following are equivalent:

(i) $RM > RP \Rightarrow RM \sim RP$;

(ii) $RP \sim R(R/A)$ for a prime ideal A of R.

Proof. (i) \Rightarrow (ii). Assume that $RM > RP \Rightarrow RM \sim RP$. Let $A = \text{Ann}(P)$. Then $A \neq R$, and $R(R/A) > RP \Rightarrow R(R/A) \sim RP$. We will show that A is a prime ideal, using Theorem 2. If $RM > R(R/A)$, then $RM > RP$ and therefore $RM \sim RP$, from which it follows that $RM \sim R(R/A)$.

(ii) \Rightarrow (i). Assume that $RP \sim R(R/A)$. Then $RM > RP$ implies $RM > R(R/A)$. By Theorem 2, $RM \sim R(R/A)$, and then $RM \sim RP$. Q.E.D.

References

Gangadhar Meher College
Sambalpur, Orissa, India
and
Northern Illinois University
DeKalb, Illinois, U.S.A.
The results in this paper were put into the proper context in my paper *On Maximal Torsion Radicals*, Can. J. Math. 25 (1973), 712–726. The relevant part of that paper is included below.

Maximal radicals and prime ideals

A subfunctor ρ of the identity on R-Mod is a functor such that for all $M \in R$-Mod, $\rho(M)$ is a submodule of M, and if $f \in \text{Hom}_R(M,N)$, then $f(\rho(M)) \subseteq \rho(N)$. Such a functor ρ is called a *radical* of R-Mod if $\rho(M/\rho(M)) = 0$ for all $M \in R$-Mod. A radical is *proper* if it is not the identity functor on R-Mod, or, equivalently, if $\rho(R) \neq R$.

If ρ and σ are radicals with $\rho(M) \subseteq \sigma(M)$ for all $M \in R$-Mod, we write $\rho \leq \sigma$, and if ρ is a radical then we call ρ a *maximal radical* if ρ is proper and for any other radical σ with $\rho \leq \sigma$, either $\rho = \sigma$ or σ is the identity on R-Mod.

If ρ is a radical, then a module rM is called *ρ-torsion* if $\rho(M) = M$, and *ρ-torsionfree* if $\rho(M) = 0$. A submodule $M_0 \subseteq M$ is called *ρ-dense* if M/M_0 is ρ-torsion, and *ρ-closed* if M/M_0 is ρ-torsionfree. A (left) ideal A of R is a *maximal* ρ-closed (left) ideal if it is maximal in the set of proper ρ-closed (left) ideals.

For any module rN, we define $\text{rad}_N : R$-$\text{Mod} \to R$-Mod by setting

$$\text{rad}_N(M) = \bigcap_{f \in \text{Hom}_R(M,N)} \ker(f)$$

for all $M \in R$-Mod. Then it can be shown that rad_N is a radical, and that $\text{rad}_N(R) = \text{Ann}(N)$.

If ρ is a radical and rN is ρ-torsionfree, then for any module rM and any $f \in \text{Hom}_R(M,N)$ we must have $f(\rho(M)) \subseteq \rho(N) = 0$, and thus $\rho \leq \text{rad}_N$. On the other hand, if $\rho \leq \text{rad}_N$, then $\text{rad}_N(N) = 0$ implies $\rho(N) = 0$. Therefore $\rho \leq \text{rad}_N$ if and only if $\rho(N) = 0$. This result will prove to be useful in the characterization of maximal radicals.

Lemma. Let A be an ideal of R. Then A is a prime ideal if and only if $\text{rad}_N \geq \text{rad}_{R/A}$ implies $\text{Ann}(N) = A$, for all nonzero $N \in R$-Mod.

Proof. Assume that A is a prime ideal and that $\text{rad}_N \geq \text{rad}_{R/A}$. Then $\text{rad}_{R/A}(N) = 0$, so there exists $0 \neq f \in \text{Hom}_R(N,R/A)$ since $N \neq 0$, which implies that $f(N) \neq 0$. Because R/A is a prime ring and $\text{Ann}(N) \cdot f(N) = 0$, it follows that $\text{Ann}(N) \subseteq A$. On the other hand, by assumption $\text{Ann}(N) = \text{rad}_N(R) \geq \text{rad}_{R/A}(R) = \text{Ann}(R/A) = A$.

Conversely, let B and C be ideals of R with $BC \subseteq A$. If $A \subseteq C$, then $C/A \neq 0$ and $\text{rad}_{C/A} \geq \text{rad}_{R/A}$. By assumption $A = \text{Ann}(C/A) \supseteq B$, and this is sufficient to show that A is a prime ideal. Q.E.D.
PROPOSITION. Let A be an ideal of R. Then A is a prime ideal if and only if A is a maximal ρ-closed ideal for a radical ρ.

PROOF. If A is a prime ideal, let $\rho = \text{rad}_{R/A}$. Then A is ρ-closed, and if B is any proper ρ-closed ideal, then $\text{rad}_{R/A} \geq \text{rad}_{R/A}$, and the lemma implies that $B = \text{Ann}(R/B) \subseteq A$.

Conversely, if A is a maximal ρ-closed ideal and $\text{rad}_{N} \geq \text{rad}_{R/A}$ for some $0 \neq N \in R$-Mod, then $\text{Ann}(N) \supseteq A$ and $\text{Ann}(N)$ is ρ-closed since $\text{rad}_{N} \geq \rho$. By assumption we must have $\text{Ann}(N) = A$, and then the lemma implies that A is a prime ideal. Q.E.D.

THEOREM. Let ρ be a radical of R-Mod, with $\rho(R) = A$. Then ρ is a maximal radical if and only if $\rho = \text{rad}_{R/A}$ and A is a prime ideal.

PROOF. Suppose that ρ is a maximal radical. Then $A \neq R$ and $\rho(R/A) = 0$ implies $\rho \leq \text{rad}_{R/A}$, so $\rho = \text{rad}_{R/A}$ since ρ is maximal. Furthermore, A is a maximal ρ-closed ideal since any larger ρ-closed ideal would determine a larger radical. The proposition then shows that A is a prime ideal.

Conversely, if A is a prime ideal and $\rho = \text{rad}_{R/A}$, then the proof of the proposition shows that A is a maximal ρ-closed ideal. If α is a radical with $\alpha \geq \rho$, then $\alpha(R)$ is ρ-closed and contains A. Hence either $\alpha(R) = R$ or $\alpha(R) = A$ and $\alpha \leq \text{rad}_{R/A} = \rho$. Q.E.D.

COROLLARY. Every proper radical of R-Mod is contained in a maximal radical if and only if for each $0 \neq M \in R$-Mod there exists a submodule $M_0 \subseteq M$ such that $\text{Ann}(M_0)$ is a prime ideal.

PROOF. If $0 \neq M \in R$-Mod and every proper radical is contained in a maximal radical, then the theorem shows that there exists a prime ideal P with $\text{rad}_{R/P} \geq \text{rad}_M$. Let $M_0 = \{m \in M : Pm = 0\}$. It can easily be shown that $\text{Ann}(M_0) = P$.

Conversely, let ρ be a proper radical with $\rho(R) = A$. By assumption there exists a left ideal $A \supseteq B$ for which $\text{Ann}(B/A) = P$ is a prime ideal. Thus $\rho \leq \text{rad}_{R/A} \leq \text{rad}_{R/P}$, and $\text{rad}_{R/P}$ is a maximal radical. Q.E.D.