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ON LEFT FBN RINGS1

John A. Beachy2

Let R be a left Noetherian ring with identity. (All modules considered are
unital left modules.) The ring R is said to be left FBN if for each prime ideal
P of R, each left ideal of R/P that is essential in R/P contains a nonzero
two-sided ideal. It is well known ([6], Proposition VII 2.4) that R is left FBN
if for each finitely generated R-module M there exist m1, . . . ,mn ∈ M such
that Ann(M) = Ann(m1, . . . ,mn), and Cauchon has shown in [3] that the
converse is true. In this note we give a local version of the above result, and
we show that R is left FBN if and only if this local condition holds for each
minimal prime torsion theory.

For each R-module M , a torsion theory τM is defined in the following way:
τM(X) = {x ∈ X | f(x) = 0 for each f ∈ HomR(X,E(M))}, where E(M)
denotes the injective envelope ofM . Let σ be a torsion theory ofR–Mod. Then
an R-module X is called σ-torsion (σ-torsionfree) if σ(X) = X (σ(X) = 0),
and a submodule Y of X is called σ-dense (σ-closed) if X/Y is σ-torsion (σ-
torsionfree). A torsion theory π is said to be prime if there exists a uniform
R-module U such that π = τU . In this case, if Ann(x) is maximal in the set
{Ann(u) | u ∈ U}, then each nonzero submodule of Rx is π-dense, and as a
consequence the localization (Rx)π is a minimal subobject of Uπ. If the ideal
P is maximal in the set of annihilators of submodules of U , then P is a prime
ideal of R, and τR/P is a prime in R–Mod satisfying τR/P ≥ π (there exists
a uniform submodule A of R/P such that τR/P = τA by Theorem 3.9 of [5]).
The ideal P is called an associated prime ideal of U . We denote by ass(M)
the set of prime torsion theories π such that there exists a uniform submodule
U of M such that π = τU .

1This is a translation of the original paper, which appeared in French.
2I would like to thank Professor J. Lambek and the Department of Mathematics of McGill

University for their hospitality.
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Lemma 1 Let π be a prime torsion theory of R–Mod, and let M be a finitely
generated R-module such that ass(M) = {π}. If {Mα}α∈Λ is a family of π-
closed submodules of M such that ∩α∈ΛMα = 0, then there exists a finite subset
Φ of Λ such that ∩α∈ΦMα = 0.

Proof. Since M is a Noetherian module and ass(M) = {π}, M contains an
essential submodule ⊕ni=1Ui, such that each module Ui is uniform and defines
π. Therefore πM = 0 and Mπ contains an essential subobject ⊕ni=1Mi, such
that each subobject Mi is minimal in Mπ. The one-to-one correspondence ([6],
Corollary IX 4.4) between the set of π-closed submodules of M and the set of
subobjects of Mπ (which preserves intersections) shows that ∩α∈Λ(Mα)π = 0,
and so there exists a finite subset Φ of Λ such that ∩α∈Φ(Mα)π = 0, and thus
∩α∈ΦMα = 0. 2

Theorem 2 If σ is a torsion theory of R–Mod, then the following conditions
are equivalent.

(1) For each σ-closed prime ideal P of R, each essential σ-closed left ideal
of R/P contains a nonzero two-sided ideal.

(2) For each finitely generated σ-torsionfree R-module M , there exist ele-
ments m1, . . ., mn ∈M such that Ann(M) = Ann(m1, . . . ,mn).

Proof. (1) ⇒ (2). Let M be a finitely generated σ-torsionfree R-module. It
is sufficient to establish condition (2) when M is a uniform R-module, since
each finitely generated R-module X has a decomposition ∩ni=1Xi = 0 such that
X/Xi is uniform. Let π = τM , A = Ann(M), and ρ ∈ ass(R/A). Then there
exists a prime ideal P associated to ρ, and it is easy to verify that there exists
a submodule N of M such that P = Ann(N), so P is σ-closed in R. If we
show that τR/P = π, then ρ = π and ass(R/A) = {π}, and it follows, from
Lemma 1, that there exists a finite subset of the set {Ann(m) | m ∈M} such
that A = ∩ni=1 Ann(mi).

If HomR(N ′, R/P ) = 0 for each submodule N ′ of N , then N is a sin-
gular R/P -module, and if N = Rx1 + . . . + Rxk, then ∩ki=1 Ann(xi)/P is
an essential σ-closed left ideal of R/P ; therefore it contains a nonzero two-
sided ideal I/P , and IN = 0, which is impossible since P = Ann(N). We
can therefore conclude that there exists a submodule N ′ of N such that
HomR(N ′, R/P ) 6= 0, and if f(N ′) 6= 0, then there exist y1, . . . , ym ∈ N ′

such that P = Ann(f(y1), . . . , f(ym)) = Ann(y1, . . . , ym), since P is a prime
ideal and there does not exist an infinite descending chain of annihilators of
R/P . This shows that E(R/P ) is contained in a finite direct sum of copies
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of E(M), and Azumaya’s theorem ([6], Proposition V 5.4) implies that there
exists a submodule A of R/P such that E(M) ' E(A). Therefore τR/P = ρ.

(2) ⇒ (1). If P is a prime ideal of R and C/P is an essential σ-closed left
ideal of R/P , then R/Ann(R/C) is contained in a finite direct sum of copies
of R/C. This shows that P ⊂ Ann(R/C) ⊆ C, since R/C is a singular R/P
module but R/P is a nonsingular R/P -module. 2

If R satisfies the conditions of Theorem 2, then it is easy to check that the
correspondence which associates to each indecomposable injective R-module
E the unique prime ideal maximal in the set of annihilators of submodules of
E induces a one-to-one correspondence between the set of isomorphism classes
of σ-torsionfree indecomposable injective R-modules and the set of σ-closed
prime ideals of R.

Corollary 3 If σ is a maximal torsion theory of R–Mod, then for each finitely
generated σ-torsionfree R-module there exist elements m1, . . . ,mn ∈ M such
that Ann(M) = Ann(m1, . . . ,mn).

Proof. If σ is maximal, then there exists a minimal prime ideal P such
that σ = τR/P ([2], Theorem 4.6) and P is the only σ-closed prime ideal
in R ([1], Proposition 1.2). If A/P is an essential left ideal of R/P , then
HomR(B/A,R/P ) = 0 for each left ideal B such that A ⊆ B ⊆ R, since B/A
is a singular R/P -module, but R/P is a nonsingular R/P -module. Therefore
A/P is not σ-closed in R/P , and thus condition (1) of Theorem 2 is trivially
satisfied. 2

Theorem 4 The ring R is left FBN if and only if each torsion theory mini-
mal in the set of prime torsion theories of R–Mod satisfies the conditions of
Theorem 2.

Proof. If R is left FBN, then the conditions of Theorem 2 are satisfied for
every torsion theory.

Conversely, it is sufficient to show that for each finitely generated uniform
R-module M there exist m1, . . . ,mn ∈ M with Ann(M) = Ann(m1, . . . ,mn).
Let C be a left ideal of R maximal in the set of τM -closed left ideals of R. If π is
prime in R–Mod and π is strictly contained in τM , then C is strictly contained
in a left ideal B maximal in the set of π-closed left ideals of R. Since R is left
Noetherian, this construction eventually yields a torsion theory σ minimal in
the set of prime torsion theories, and σ ≤ τM . Therefore σM ⊆ τM(M) = 0
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and condition (2) of Theorem 2 show that there exist m1, . . . ,mn ∈ M such
that Ann(M) = Ann(m1, . . . ,mn). 2

We note that if each prime torsion theory of R–Mod is maximal, then it
follows from Theorem 4 and Corollary 3 that R is left FBN. Therefore R is left
Artinian, since each prime ideal of R is maximal ([6], Proposition VIII 1.14).
This gives a new proof of Theorem 5.10 of Goldman [4].
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