Some comments on recent discussion of the Boyle van’t Hoff relationship

James D. Bensona,*

aDepartment of Mathematical Sciences, Northern Illinois University, DeKalb, IL, 60115-2888

Abstract

The estimation of several cellular biophysical parameters must be made in order to mathematically predict optimal cryopreservation protocols. These parameters include total cell volume, osmotically inactive volume, cell surface area, and relative water and solute permeabilities. Recent attention has been paid to the determination of the osmotically inactive volume and, specifically, an argument was made suggesting that this volume was incorrectly determined in the literature (Katkov, 2011). Here we show that this assertion is false.

Keywords: cryobiology, Boyle van’t Hoff, osmotically inactive volume, osmotic pressure, linear regression

After the work of Meryman (see e.g. [6]), one of the principle focuses of cryobiology has been to develop and understand the relationship between the water volume of cells and their biophysical history. The first and most commonly acknowledged application of this idea in mathematical terms was presented by Mazur [5], and many more followed. The relationship between intracellular water content and the likelihood of ice formation is fundamental to cryobiology, and as such much deserved attention has been paid to this quantity.

In order to understand this relationship, models are constructed that describe the transport induced by concentration gradients across cell membrane...
encountered during cryopreservation, typically of a form similar to
\[
\begin{align*}
\frac{dw}{dt} &= P_w A (\mu_{w}^e(t) - \mu_{w}^i(w, s, n)), \\
\frac{ds}{dt} &= P_s A (\mu_{s}^e(t) - \mu_{s}^i(w, s, n)), \\
\frac{dn}{dt} &\equiv 0,
\end{align*}
\]

(1)

where \(w\), \(s\) and \(n\) indicate moles of intracellular water, permeating and nonpermeating solute, respectively, \(A\) is the fixed cell surface area, and \(\mu_w\) and \(\mu_s\) and \(P_w\) and \(P_s\) are chemical potentials and permeability coefficients for water and solute, respectively [9].

Although many methods for estimating \(P_w\) and \(P_s\) exist, one commonly employed in the cryobiological literature is to use the relationship
\[
v = \bar{v}_w w + \bar{v}_s s + \bar{v}_n n + v^*_b
\]

(2)

where \(v\) is the total cell volume, \(\bar{v}_w\), \(\bar{v}_s\), and \(\bar{v}_n\) are the partial molar volume of the water, and permeating and nonpermeating solutes, respectively, and \(v^*_b\) is the so called “osmotically inactive volume” of the cell, thought to consist of (among others) solids such as cell and organelle membrane, organelles, large protein complexes such as actin, and water which is “bound” to these structures in such a way as to not be available to contribute to the intracellular chemical potential in a significant way, and certainly not available to be transported across the semipermeable cell membrane [8]. It can be shown that the volume occupied by isotonic potassium chloride in a cell makes up less than 1% of the isosmotic volume and this volume remains relatively constant (up to concentration dependence of the partial molar volume). If one assumes \(d\bar{v}_n/dt \equiv 0\), the volume of the nonpermeating solutes \(\bar{v}_n n\) may be accounted in the \(v^*_b\) term (e.g. \(v_b := v^*_b + \bar{v}_n n\)).

Assuming \(d\bar{v}_w/dt \equiv d\bar{v}_s/dt \equiv d\bar{v}_n/dt \equiv 0\), equation (2) may be differentiated

\[\text{Except in the paragraph on page 5 describing relative volume, all variables indicate non-normalized values.}\]
with respect to time to yield

\[
\frac{dv}{dt} = \bar{v}_w \frac{dw}{dt} + \bar{v}_s \frac{ds}{dt}.
\]

(3)

With equation (3) and system (1) in hand, one may then use measurement techniques that estimate total cell volume to estimate best-fit parameters \(P_w \) and \(P_s \). Although we may assume that \(v(0) \) is known through current or prior measurement, this coupling requires knowledge of the initial conditions for system (1), namely \(w(0) \) and \(s(0) \). However, in the absence of some physical way to estimate initial \(w \) and \(s \), one must make an assumption about the osmotic behavior of the cell.

Most often the assumption made is that the osmotic pressure and solvent volume are governed by the Boyle van’t Hoff relationship. In the most used case in cryobiology, this states that

\[
\pi \bar{v}_w w = c
\]

(4)

where \(c \) is a constant that may depend on temperature [7] and \(\pi \) is the osmotic pressure in the system. Using relationship (4) one then may conduct experiments to determine \(c \), and when used in conjunction with equation (2) and putting \(s \equiv 0 \), one may use total volume measurements to determine \(v_b \). In particular, one may set \(\pi_0 \bar{v}_w w_0 = \pi \bar{v}_w w \) where subscript 0 indicates a particular value (e.g. isosmotic). Dividing through by \(\pi \neq 0 \) yields

\[
w = \frac{\pi_0}{\pi} w_0,
\]

(5)

and to recover total volume, we add \(v_b \) to both sides:

\[
v = \bar{v}_w w + v_b = \frac{\pi_0}{\pi} \bar{v}_w w_0 + v_b.
\]

(6)

Prickett et al. [7] argue that the application of equation (4) in the context of non-ideal solutions is incorrect. Because inferring \(v_b \) from extrapolation to infinite concentrations by definition involves non-ideal solutions, using the classical Boyle van’t Hoff relationship in eq. (4) to find \(v_b \) is also incorrect. Instead they
use a conservation of mass argument. By system (1), \(n_0 = n \), which is equivalent to \(m_0 \rho_w w_0 = m \rho_w w \), where \(m \) is the molality of nonpermeating solutes and \(\rho_w \) the density of water.

Rearranging as in equation (5), we arrive at

\[
v = \bar{v}_w w + v_b = \frac{m_0}{m} \bar{v}_w w_0 + v_b.
\]

(7)

The challenge here is that it requires the estimation of the intracellular non-permeating molality, not osmolality which is assumed in equilibrium with the external media.

Prickett et al. use the inverse of the osmotic virial equation described by Elliott et al. [1] to solve for the concentration of nonpermeating solutes as a function of osmolality, and show that this relationship is nonlinear when the presence of certain highly active intracellular solutes are present (e.g. hemoglobin). On the other hand, Elmoazzen et al. [2] show that in the absence of these large intracellular proteins, and in particular, in the presence of salts alone, the approximation \(\pi \propto m \) is valid for a fairly large range of osmolalities, a case not discussed in [7].

We adopt this argument noting that in the ideal dilute case \(\pi = RT \delta m \), where \(\delta \) is a dissociation constant. Letting \(x := \frac{1}{m} \) and \(a := m_0 \bar{v}_w w_0 \) we have

\[
v = ax + v_b.
\]

(8)

In order to determine \(v_b \) the generally accepted method (with some exceptions) has been to fit equation (8) for the independent parameters \(a \) and \(v_b \).

Recently Katkov argued that this method for the determination of \(v_b \) was incorrect [3] on several grounds. In particular Katkov follows the derivation of equation (6), but then continues (up to normalization of the volume and concentration terms, addressed below):

\[
v = \bar{v}_w w + v_b = \frac{m_0}{m} \bar{v}_w w_0 + v_b
\]

\[
= \frac{m_0}{m} (v_0 - v_b) + v_b
\]

\[
= ax + v_b.
\]

(9)
Note Katkov divides (9) by \(V_{iso} \) to arrive at eq. 2 in [4] (we address this specifically below). Katkov’s first complaint is that now \(a = a(v_b) \) and thus \(a \) and \(v_b \) are not independent. Katkov then goes on to provide several fitting techniques that account for this dependence.

We argue here that Katkov is incorrect on this point. First, Katkov’s argument that because \(a = a(v_b) = m_0(v_0 - v_b) \) it is dependent on \(v_b \) is incorrect: by definition \(a = m_0\bar{v}_w w_0 \). Although it is possible to add and subtract other variables to imply dependence (here we have added and subtracted \(v_b \) from \(w_0 \) to arrive at \(\bar{v}_w w_0 = v_0 - v_b \)), this does not mean that \(w_0 \) is dependent on \(v_b \). If this were true, we could infer considerably more complicated dependencies! In short, it is not wrong to use this substitution, but it is incorrect and unnecessary to fit equation (10) with \(a = a(v_b) \).

Additionally, the mass balance derivation of the nonideal van’t Hoff relationship depends only on the molality of intracellular solutes and the volume of water. Again we note that by the above definition \(v_b \) is the volume unaccounted for by \(\bar{v}_w w \) and \(\bar{v}_s s \) and thus, since \(n \) is constant, \(m_0 \) and \(w \) do not depend on \(v_b \). Therefore, the slope of equation (8) is \textit{a priori} independent of \(v_b \). One may claim that if \(d\bar{v}_n/dt \neq 0 \), then \(dv_b/dt \neq 0 \). In this case, we may repeat the above arguments with \(v_b^* \) while accounting for this condition.

Next we address Katkov’s proposition that the only valid regression is one in which the volume in isosmotic is fixed to be an \textit{a priori} determined value. In particular, Katkov’s derivation of the BVH relationship continues by dividing eq. (9) by \(v_0 \), where we define the relative volume \(v^r := v/v_0 \), relative osmotically inactive volume \(v_b^r \) (sometimes, and in Katkov’s case, known as the osmotically inactive fraction), and relative concentration variable \(x = m_0/m \), yielding

\[
v^r = x(1 - v_b^r) + v_b^r,
\]

\[
= a(v_b)x + v_b^r.
\]

Therefore evaluate at the particular value \(m_0 \), we have

\[
1 = a(v_b) + v_b^r.
\]
Katkov concludes that valid regressions, therefore, must have this relationship.

There are several flaws with this argument. The first and most mathematical argument is that by definition, the derivation of eq. (11) is incorrect: \(a \) is independent from \(v_b \). Therefore, eq. (12) should be

\[
1 = v_0^{-1} \bar{w} w_0 + v_b^n,
\]

\[
= v_0^{-1} a + v_b^n,
\]
as including \(v_0 \) into the \(a \) term causes \(a \) to be \(v_b \) dependent (since \(v_0 = \bar{w} w_0 + v_b \)).

The second argument is that it is statistically inappropriate to determine, independently, \(v_0 \) and then regress all remaining data. There is certainly a confidence interval around \(v_0 \), and as such one should expect that the regression, with arguably considerably more information should determine \(v_0 \) more accurately than at \(m_0 \) alone. In other words, volumes determined at multiple concentrations refine the measurement at a particular concentration. This leads to the last and possibly most intuitive argument: we have been completely arbitrary in our choice of \(v_0 \). Why do we choose to fix the “known” volume at isosmotic? From our derivations above, there is nothing that precludes us “choosing” \(m_0 \) to be anisosmotic. If we choose \(v_0 \) to be determined at a high osmolality (say, \(m_0 = 2 \text{ mol/kg} \)) and “fix” the volume as Katkov recommends, then, because of its proximity to the intercept, \(v_b \) will be skewed to values corresponding to hyperosmotic volume measurements.

For a concrete example of the last argument we used the mean volume data presented in [4] in figure 2A. Without the original data, some slight differences will be produced, but for the purposes of this demonstration, they will suffice. We now perform a sequence of linear regressions. First we perform the correct, non-fixed regression, with \(a \) independent of \(b \), arriving at \(a = .58 \) and \(v_b^n = .26 \), matching the values presented in figure 2A. Next we fix the regression to pass through each of the 10 volume-concentration points. Values are presented in Table 1. The mean \(b \) value is 0.266±0.084 (mean± SD), with the highest \(b \) value corresponding to the isosmotic point. This is due to the concavity of the
data, a commonly encountered phenomena in the literature [10]. This example serves to illustrate the huge dependence of v^r on the arbitrary fixing of a point for the regression to pass through.

Acknowledgements

Research funding for J. Benson was provided in part by the National Institute of Standards and Technology and a National Research Postdoctoral Associate-ship.

References

Table 1: Data presented in Figure 2A [4] were regressed with equation (8) and the indicated point fixed, yielding coefficients a and b dependent on the fixed point.

<table>
<thead>
<tr>
<th>Fixed Point</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0.22, 0.3)</td>
<td>0.647</td>
<td>0.158</td>
</tr>
<tr>
<td>(0.29, 0.35)</td>
<td>0.640</td>
<td>0.164</td>
</tr>
<tr>
<td>(0.35, 0.41)</td>
<td>0.621</td>
<td>0.193</td>
</tr>
<tr>
<td>(0.43, 0.51)</td>
<td>0.579</td>
<td>0.261</td>
</tr>
<tr>
<td>(0.67, 0.73)</td>
<td>0.532</td>
<td>0.372</td>
</tr>
<tr>
<td>(1, 1)</td>
<td>0.593</td>
<td>0.405</td>
</tr>
<tr>
<td>(1.31, 1.07)</td>
<td>0.611</td>
<td>0.269</td>
</tr>
<tr>
<td>(1.51, 1.26)</td>
<td>0.674</td>
<td>0.242</td>
</tr>
<tr>
<td>(1.7, 1.23)</td>
<td>0.566</td>
<td>0.266</td>
</tr>
<tr>
<td>(2.15, 1.33)</td>
<td>0.464</td>
<td>0.332</td>
</tr>
</tbody>
</table>

Mean ± S.D. 0.593 ± 0.062 0.266 ± 0.083