Instructor: Dr A. Fletcher, email: fletcher@math.niu.edu

Lectures: MWF 9:00-9:50; DU348.

Office hours: MWF 10:00 - 10:50, 368 Watson Hall.

Course objectives and intended learning outcomes: can be found at http://www.math.niu.edu/courses/descr/430.pdf

Website: Lots of useful information, such as notes, homework assignments etc will appear at this clickable link.

Class policy: Attendance in all classes is expected. No late work will be accepted. No make-up quizzes will be given. Make-up exams may be scheduled only if prior arrangements have been made or in the event of documented illness or emergency.

Academic Conduct: Academic honesty and mutual respect (student with student and instructor with student) are expected in this course. Mutual respect means being on time for class and not leaving early, being prepared to give full attention to class work, not reading newspapers or other material in class, not using cell phones or pagers during class time, and not looking at another student’s work during exams. Academic misconduct, as defined by the Student Judicial Code, will not be treated lightly.

Accessibility Statement: If you need an accommodation for this class, please contact the Disability Resource Center as soon as possible. The DRC coordinates accommodations for students with disabilities. It is located on the 4th floor of the Health Services Building, and can be reached at 815-753-1303 or drc@niu.edu.

Also, please contact me privately as soon as possible so we can discuss your accommodations. Please note that you will not be required to disclose your disability, only your accommodations. The sooner you let me know your needs, the sooner I can assist you in achieving your learning goals in this course.

Grades: Your final letter grade will be calculated on a total of 600 points, as follows:

- 150 points from Homework: Homework will normally be due on each Wednesday. Each homework is worth 10 points. However, the lowest two scores will be dropped before final HW grades are computed. The HW grade will be scaled to 150 points at the end of semester.
- 50 points from Quizzes: Quizzes will be given on some Fridays. Each quiz will be worth 10 points. The lowest quiz score will be dropped at the end of term and the total scaled to 50 points.
- 200 points from two one-hour Exams: There will be two in-class exams. Each will be worth 100 points. No notes or books will be allowed during exams.
• 200 points from one **Final Exam**: The final exam is scheduled for the week beginning December 10th 2018.

There may be opportunities for extra credit.

<table>
<thead>
<tr>
<th>Grade</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>>85%</td>
</tr>
<tr>
<td>B</td>
<td>75-85%</td>
</tr>
<tr>
<td>C</td>
<td>65-75%</td>
</tr>
<tr>
<td>D</td>
<td>55-65%</td>
</tr>
<tr>
<td>F</td>
<td><55%</td>
</tr>
</tbody>
</table>

The grading scale is as follows:

Grades of A-, B+, B- and C+ are possible in borderline cases.

Graphing calculators: Calculators (without text memory, symbolic operations and communication ability) will be allowed during the quizzes, the tests and the final exam. It may be helpful on homework assignments, quizzes, and exams, but it will never be essential.

Suggested class pace:

- Week 1, Chapter 0: Sets, relations and functions, induction, equivalent and countable sets
- Week 2, Chapter 0: real numbers; Chapter 1: Sequences
- Week 3, Chapter 1: Convergent sequences, Cauchy sequences
- Week 4, Chapter 1: Arithmetic on sequences, subsequences
- Week 5, Chapter 1: Monotone sequences, Chapter 2: Limits of functions,
- Week 6, Chapter 2: relation to sequences, **Midterm 1**
- Week 7, Chapter 2: Algebra of limits, limits of monotone functions
- Week 8, Chapter 3: Definition of continuity
- Week 9, Chapter 3: Algebra of continuous functions, uniform continuity
- Week 10, Chapter 3: some topology: open, closed and compact sets, properties of continuous functions
- Week 11, Chapter 4: Derivative of a function, **Midterm 2**
- Week 12, Chapter 4: Algebra of derivatives, Rolle’s Theorem, Mean Value Theorem
- Week 13, Chapter 4: l’Hôpital’s rule and inverse functions, *Thanksgiving break*
- Week 14, Chapter 5: The Riemann integral
- Week 15, Chapter 5 and Review
- Final exam, week of 12/10-12/15.

The final date for undergraduate withdrawals is Friday October 19th.

Please note that the syllabus may be amended from time to time. Exam dates may vary from the ones indicated. It is the student’s responsibility to monitor the pace of the lectures. If you must miss a class, find out precisely which material you must learn on your own.