Q-differences and target functions (Joint work with J.K. Langley and J. Meyer)

Alastair Fletcher

University of Glasgow

CMFT conference, June 2009
The plan for the next 25 minutes is:

- give motivation for the talk;
- introduce the main problem of finding when \(f \circ g - f \) has infinitely many zeros;
- discuss the problem for so-called \(q \)-differences when \(g(z) = qz \) for \(|q| \neq 0, 1\);
- generalize the problem to \(g \) being a non-linear polynomial and then a transcendental entire function;
- generalize again to target functions.
Throughout the talk, we will use standard terminology from value distribution theory:

- $T(r, f)$ denotes the Nevanlinna functional which measures the growth of a meromorphic function f (cf. $\log^+ M(r, f)$ for entire functions).
- The order ρ of a meromorphic function is
 \[
 \rho(f) = \limsup_{r \to \infty} \frac{\log^+ T(r, f)}{\log r}.
 \]
- The lower order μ replaces \limsup with \liminf.
- $\overline{N}(r, 1/f)$ is the integrated counting function of zeros of f with no regard to multiplicity.
As a starting point, consider the following theorem (see Clunie-Eremenko-Rossi 1993, Eremenko-Langley-Rossi 1994, Hinchliffe 2003):

Theorem

Let f be transcendental meromorphic in \mathbb{C} with

$$\liminf_{r \to \infty} \frac{T(r, f)}{r} = 0.$$

Then f' has infinitely many zeros. Further, if f is entire, then f'/f has infinitely many zeros.
Let

$$\Delta f(z) = f(z + 1) - f(z)$$

and

$$\Delta^{n+1} f(z) = \Delta^n f(z + 1) - \Delta^n f(z)$$

for $n = 1, 2, \ldots$. In view of the previous theorem, it is natural to conjecture whether Δf has infinitely many zeros.

Theorem (Langley, 2009)

Let f be transcendental meromorphic in \mathbb{C} of order less than $1/6$. Then at least one of Δf and $(\Delta f)/f$ have infinitely many zeros.
What if Δf is replaced with

$$\Delta_q f(z) = f(qz) - f(z)$$

for $q \in \mathbb{C}$ (see Barnett-Halburd-Korhonen-Morgan 2007)? If q is a root of unity, then we can find f such that $\Delta_q f$ has no zeros.

Theorem (F-Langley-Meyer, 2009)

Let $q \in \mathbb{C}$ with $|q| > 1$ and let f be transcendental meromorphic with

$$L(f) := \liminf_{r \to \infty} \frac{T(r, f)}{(\log r)^2} = 0.$$

Then at least one of $\Delta_q f$ and $(\Delta_q f)/f$ has infinitely many zeros.
The growth rate allowed by this theorem is quite slow, but it is sharp. Fix $q \in \mathbb{C}$ with $|q| > 1$ and define

$$f(z) = \prod_{n=0}^{\infty} \left(1 - \frac{z}{q^n}\right)^{-1}.$$

Then it is easy to see that

$$f(qz) = \frac{f(z)}{1 - qz}.$$

Hence $(\Delta_q f)/f$ is rational and neither $\Delta_q f$ or $(\Delta_q f)/f$ have infinitely many zeros, while $L(f)$ is positive and finite (and we can make it arbitrarily small by taking $|q|$ arbitrarily large).
Outline of proof

- Since $L(f) = 0$, we can write $f(z) = b_n + c_n z^{\alpha_n} (1 + \delta_n(z))$ on big annuli A_n, where $b_n \in \mathbb{C}$, $c_n \in \mathbb{C} \setminus \{0\}$, $\alpha_n \in \mathbb{Z}$ and $\delta_n = o(1)$.

- Show that, by taking subsequences if necessary, $b = \lim_{n \to \infty} b_n \in \mathbb{C} \setminus \{0\}$ and that $f(z) = b$ has finitely many solutions in \mathbb{C}.

- Writing $h(z) = f(z) - b$, show that $H = (\Delta_q h)/h$ has infinitely many zeros. If they are poles of f, then they are zeros of $(\Delta_q f)/f = H(f - b)/f$. Otherwise, they are zeros of $\Delta_q f$.

Alastair Fletcher q-diff and targets
The methods used in this proof can be used to prove the following generalization.

Corollary

Let f be transcendental meromorphic in \mathbb{C}, $L(f) = 0$ and $a, b \in \mathbb{C}$ with $|a| \neq 0, 1$. Then at least one of $f(az + b) - f(z)$ and $(f(az + b) - f(z))/f(z)$ has infinitely many zeros.
We have considered zeros of functions of the form $f \circ g - f$ where g is linear. What about if g is a non-linear polynomial? If we first insist that f has finitely many poles, then we have the following result.

Theorem (F-Langley, 2009)

Let f be transcendental meromorphic of finite order $\rho(f)$ with finitely many poles and let g be a polynomial of degree $m \geq 2$. Then $F = f \circ g - f$ has infinitely many zeros, and if $\rho > 0$, then the exponent of convergence of the zeros of F is $\rho(F) = m\rho(f)$.
A reminder of the exponent of convergence

Given a sequence \((a_n)\) in \(\mathbb{C}\), arranged in order of non-decreasing modulus, let \(n(r)\) denote the number of \(a_n\) in \(|z| \leq r\) and set

\[
N(r) = \int_0^r \frac{n(t)}{t} \, dt.
\]

The exponent of convergence \(\lambda\) of the sequence \((a_n)\) is

\[
\lambda = \limsup_{r \to \infty} \frac{\log N(r)}{\log r} = \limsup_{r \to \infty} \frac{\log n(r)}{\log r},
\]

and is also the infimum of \(c > 0\) such that \(\sum |a_n|^{-c}\) converges.

Simple example: \(a_n = n\) for \(n \in \mathbb{N}\) has exponent of convergence 1.
In the case where f is allowed to have infinitely many poles, there is the following result.

Theorem (F-Langley 2009)

Let f be transcendental meromorphic of finite order $\rho(f)$, g be a polynomial of degree $m \geq 2$ and $F = f \circ g - f$. If $0 < \rho(f) < 1/m$, or if $\rho = 0$ and $m \geq 4$, then F has infinitely many zeros. If $\rho = 0$, then the equation $f(g(z)) = f(z)$ has infinitely many solutions in \mathbb{C}.
When g is transcendental

First, note that if g is transcendental entire with no fixed points and $f = R \circ g^n$ for some $n \in \mathbb{N}$, where R is a Möbius transformation, then

$$F = f \circ g - f = R \circ g^{n+1} - R \circ g^n$$

has no zeros since if w a zero of F, then $g^n(w)$ is a fixed point of g. This gives a hint to the following theorem, which says that if F has too few zeros, then f and g must be of a certain special form.
When \(g \) is transcendental

Theorem (F-Langley 2009)

Let \(f \) be transcendental meromorphic of finite order and \(g \) transcendental entire of finite lower order. Assume that there exists a set \(E \subseteq [1, \infty) \) of positive lower logarithmic density such that \(F = f \circ g - f \) and \(f \) satisfy

\[
\overline{N}(r, 1/F) + T(r, f) = O(T(r, g))
\]

on \(E \). Then there exist a Möbius transformation \(R \) and polynomials \(P, S \) such that \(f = R \circ g \) and

\[
g(z) = z + S(z)e^{P(z)}.
\]

If \(f \) has finitely many poles, then \(f = ag + b \) for \(a, b \in \mathbb{C} \).
When g is transcendental

- The hypotheses imply that we must have the growth of f being controlled by the growth of g, at least on a set of positive lower logarithmic density E; that is, E must satisfy
\[\liminf_{r \to \infty} \frac{\int_{E \cap [1, r]} dt}{t \log r} > 0. \]

- We also must have the exponent of convergence of the zeros of F being at most the order of g, when restricted to the set E.

- It then follows that g must have finitely many fixed points, and f is just g post-composed by a Möbius transformation.

- Conversely, if f and g are not of this form, then the exponent of convergence of the zeros of F must be larger than the order of g.

Alastair Fletcher
q-diff and targets
The previous theorem is a special case of the following theorem, which improves upon results of Katajamäki, Kinnunen and Laine. This theorem considers zeros of $F = f \circ g - Q$ where Q is called a target function.
Theorem (F-Langley, 2009)

The hypotheses: let f, g and Q be meromorphic in \mathbb{C} with the following properties:

- f is transcendental meromorphic of finite order;
- g is transcendental entire of finite lower order;
- there exists a set $E \subseteq [1, \infty)$ of positive lower logarithmic density such that Q and $F = f \circ g - Q$ satisfy

\[
T(r, Q) + \overline{N}(r, 1/F) = O(T(r, g))
\]

on E.
Theorem (F-Langley, 2009, continued)

Then at least one of the following two conclusions occurs:

- there exists a rational function \(R \) such that \(f - R \) has finitely many zeros, \(Q = R \circ g \), and this conclusion always occurs if \(f \) has finitely many poles;

- there exist rational functions \(A, B, C \) such that \(f \) solves the Riccati equation \(y' = A + By + Cy^2 \) and \(Q' = g'(A \circ g + (B \circ g)Q + (C \circ g)Q^2) \) so that locally we may write \(Q = w \circ g \) for some solution \(w \) of the Riccati equation above.

Further, if \(T(r, Q) = o(T(r, g)) \) on \(E \), then \(Q \) must be constant.
It is worth remarking that if \(f \) has infinitely many poles, then the second case can occur with the local solution \(w \) not meromorphic in the plane (e.g. it could involve a \(z^{1/2} \)).

If \(Q = w \circ g \) with \(w \) meromorphic in the plane, then since the growth of \(Q \) is controlled by the growth of \(g \), a well-known result of Clunie implies that \(w \) must be a rational function.

A detailed discussion of the proof of the theorem would need a whole new talk...
Questions

- It seems very plausible that both $\Delta_q f$ and $(\Delta_q(f))/f$ have infinitely many zeros if $L(f) = 0$. Is this true?
- If $L(f) = 0$, $|q| = 1$ and q is not a root of unity, must $f(qz) - f(z)$ have infinitely many zeros?
- If $\rho(f) = 0$ and g is a polynomial of degree 2 or 3, show that $f \circ g - f$ has infinitely many zeros.
- Can one say anything about quasiregular target functions? For example, Bergweiler has shown that if f and g are quasiregular in \mathbb{R}^n with essential singularities at infinity and $Q(z) = z$, then $f \circ g - Q$ has infinitely many zeros.