Why Everything Interesting Factors

Proposition: Every non-zero integer not equal to 1 or -1 factors into a product of “irreducible” integers.

Proof: Suppose not. Then there is an integer which does not factor. Further, amongst all such integers is one of smallest absolute value. Call it a.

Now a can’t be irreducible itself, so we can write $a = bc$ where neither b nor c are $±1$. This implies that $|b|$ and $|c|$ are both smaller than $|a|$. But this would mean both b and c factor, so that a factors as well.

Proposition: Every non-zero polynomial which doesn’t divide 1 factors into a product of irreducible polynomials.

Proof: Suppose not. Then there is a polynomial which does not factor. Further, amongst all such polynomials is one of smallest degree. Call it a.

Now a can’t be irreducible itself, so we can write $a = bc$ where neither b nor c divide 1. This implies that b and c both have degree less than the degree of a. But this would mean both b and c factor, so that a factors as well.

Note that we did use a tiny result about polynomials above; namely, if a polynomial divides 1, then its degree is 0. This is pretty straightforward, since if $ab = 1$, then

$$\deg a + \deg b = \deg ab = \deg 1 = 0.$$
Size Doesn’t Matter
(But Theorem 1.1.4 Does)

The proofs for integers and polynomials used a “size” (absolute value or degree) which is a non-negative integer. In fact, there is a way to prove this using only the notions from Theorem 1.1.4.

Let’s say we have a set of “things” which satisfy our usual axioms for addition and multiplication, the product of two non-zero “things” is never zero, and where an analogue of Theorem 1.1.4 is also true. (Remember that Theorem 1.1.4 was a consequence of the division algorithm when our “things” were integers or polynomials.)

Generically Applicable Proof: Suppose there are non-zero \(a\) which don’t divide 1 and don’t factor. Pick any such \(a_0\). This \(a_0\) can’t be irreducible itself, so write it as \(a_0 = bc\) where neither \(b\) nor \(c\) divide 1. Now \(a_0\) doesn’t factor, and is the product of \(b\) and \(c\). So at least one of \(b\) and \(c\) doesn’t factor. Pick one which doesn’t and call it \(a_1\). Then \(a_0\) and \(a_1\) are both non-zero, don’t divide 1, and don’t factor. Further, \(a_1|a_0\) and \(a_0 \not| a_1\).

Now repeat the whole process, getting a non-zero \(a_2\) which doesn’t divide 1 and doesn’t factor into a product of irreducibles. Further, \(a_2|a_1|a_0\) and \(a_0 \not| a_1 \not| a_2\).

We can continue on, getting a whole unending chain of non-zero “things” \(a_i\) which don’t divide 1, don’t factor, \(a_{i+1}|a_i\) and \(a_i \not| a_{i+1}\).

Let \(I\) be the collection of “things” of the form \(a_i \times z\) for some index \(i\) and “thing” \(z\). We claim that this collection is an ideal. First, \(I\) is clearly not empty; \(a_0 \in I\), for example. Next, if \(a\) and \(b\) are elements of \(I\), then \(a = a_i z_1\) and \(b = a_j z_2\) for some indices \(i\) and \(j\) and “things” \(z_1\) and \(z_2\). We may suppose without loss of generality that \(i \leq j\). Then by our hypotheses (and exercise #7b from section 1.1), \(a_j|a_i\). This implies (via exercise #7b) that \(a_j|a\); let’s write \(a = a_j z_3\) for some “thing” \(z_3\). Then via exercise #7c, \(a_j|a + b\), so \(a + b\) is an element of \(I\). Finally, if \(z\) is any “thing,” then \(a z = a_i z_1 z\), which is an element of \(I\), too.

Since \(I\) is an ideal, it consists solely of multiples of some “thing” \(a\). In particular \(a = a \times 1\) is in \(I\), so must be of the form \(a_i \times z\) for some index \(i\) and “thing” \(z\). In other words, \(a_i|a\). But \(a_{i+1}\)
is also in I, so it must be true that $a|a_{i+1}$. By a exercise #7b yet again, we have $a_i|a_{i+1}$, which contradicts our construction.

Since our construction just couldn’t be, we are forced to conclude that there is no non-factorizable a_0 to start the process. In other words, all non-zero “things” which don’t divide 1 must factor into a product of irreducible “things.”

If you find this proof uncomfortable, try replacing every instance of “thing” with “integer” or “polynomial.”

It’s a very difficult exercise to find an example of a collection of “things” which satisfy the axioms for addition and multiplication together with an analogue of Theorem 1.1.4 and where the product of two non-zero “things” is never zero, but don’t have a “division algorithm.” Rest assured there are such collections, though.