Cyclic Groups

Definition A group G is called *cyclic* if there is an element $a \in G$ such that the cyclic subgroup generated by a is the entire group G. In other words,

$$G = \{a^n : n \in \mathbb{Z}\}.$$

Such an element a is called a *generator* of G.

Note that a cyclic group is abelian. On the other hand, a group which is abelian is not necessarily cyclic.

Examples and Non-Examples

1) \mathbb{Z}_n

2) S_3

3) \mathbb{Z}

4) \mathbb{R}

5) $\mathbb{Z} \times \mathbb{Z}$

6) \mathbb{Z}^{\times}_{19}
Theorem: Suppose G is cyclic and $a \in G$ is a generator of G. If G is an infinite group, then there is an isomorphism $\phi : G \to \mathbb{Z}$ determined completely by $\phi(a) = 1$. If G is finite with order n, then there is an isomorphism $\phi : G \to \mathbb{Z}_n$ determined completely by $\phi(a) = [1]_n$.

How can a finite abelian group not be cyclic? Suppose G is an abelian group of order n. By Lagrange’s theorem $a^n = e$ for any element a of G. But that doesn’t mean that the order of a is n; it only means that the order of a divides n.

Examples:

1) Consider the following three groups of order 8: \mathbb{Z}_8, $\mathbb{Z}_4 \times \mathbb{Z}_2$ and $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$.

2) Suppose G is an abelian group of order 6. Then G must be cyclic. In particular, \mathbb{Z}_7^\times is cyclic.

3) More generally, if p is an odd prime number and G is an abelian group of order $2p$, then G must be cyclic. In particular, \mathbb{Z}_{23}^\times is cyclic.

4) Suppose G is an abelian group of order 12. Then G may not be cyclic. Is \mathbb{Z}_{13}^\times cyclic?
Definition: Suppose G is a group. Suppose there is some positive integer n such that $a^n = e$ for all elements a of G. Then the smallest such n is called the *exponent* of G.

Examples

1) \mathbb{Z}_9

2) $\mathbb{Z}_3 \times \mathbb{Z}_3$

3) A direct product of infinitely many copies of \mathbb{Z}_2.

4) S_4

Note: If G is a finite group, then $g^{o(G)} = e$ for all $g \in G$ by Lagrange's Theorem, so the exponent of G is no larger than the order of G (though it may be smaller).