Cyclic Subgroups

The simplest way to get subgroups of a group is to take an element of the group and all its “powers.”

\[a^n = a \cdots a \quad n \text{ times} \]

\[a^{-n} = a^{-1} \cdots a^{-1} = (a^n)^{-1} \quad n \text{ times} \]

\[a^0 = e \]

The collection of all the powers of \(a \) is denoted \(\langle a \rangle \). It is a subgroup.

Note: In specific examples, the multiplicative notation isn’t necessarily used; one usually uses whatever notation is appropriate.

Examples
1) The group \(\text{GL}_2(\mathbb{R}) \) and

\[a = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \]

2) The group \(S_3 \) and \(a = (1, 2, 3) \)

3) The group \(\mathbb{Z} \) and \(a = 2 \)

4) The group \(\mathbb{Z}_{23}^\times \) and \(a = 2 \)

5) The group \(\mathbb{Z}_n \) and \(a = 1 \).
Recall that we did exactly this sort of thing with \mathbb{Z}_p^* back in chapter 1. You may remember that the powers of a eventually repeated. This happens in general.

Lemma: Suppose G is a finite group and $a \in G$. Then there is a smallest positive integer n where $a^n = e$. This smallest n is called the *order* of a, and is denoted $o(a)$. If $n = o(a)$, then

$$\langle a \rangle = \{a^1, \ldots, a^n\}.$$

Proof: Suppose G has m elements. Then at least two of a^1, \ldots, a^{m+1} are equal. Say $a^i = a^j$ where $1 \leq i < j \leq m + 1$. This means that $a^j(a^i)^{-1} = e$. But $(a^i)^{-1} = (a^{-1})^i = a^{-i}$, so $a^{j-i} = e$. Since $j - i$ is positive (and also $< m + 1$), the set of all positive integers n where $a^n = e$ is not empty. Thus, this set has a smallest element.

Suppose $n = o(a)$. Using the reasoning above, a^1, \ldots, a^n must all be distinct (otherwise a^{j-i} would be e with $0 < j - i < n$). Also, $a^n = e = a^0$.

Suppose $z \in \mathbb{Z}$. By the division algorithm, $z = qn + r$ where $0 \leq r < n$. This implies that

$$a^z = a^{qn+r} = a^{qn}a^r = (a^n)^qa^r = e^qa^r = a^r.$$

Hence, every element of $\langle a \rangle$ is equal to an a^r where $0 \leq r < n$. Since $a^n = a^0$, we're done.

Notice how the subgroup $\langle a \rangle$ is just like \mathbb{Z}_n; “multiplication” of an a^i and an a^j is just addition of i and j modulo n.