Lagrange’s Theorem: If G is a finite group and H is a subgroup of G, then the order of H divides the order of G. In particular, if a is an element of G, then the order of a divides the order of G.

Why the “In particular” part? If $a \in G$, then $\langle a \rangle$ is a (cyclic) subgroup of G, and its order is the order of a.

Suppose G is a group of order n and $d | n$. Then d is possibly the order of some element(s) of G. Will there always be an element of order d?

Suppose G is a group of order n. Then G is cyclic if and only if there is an element $a \in G$ of order n. Cyclic groups are always abelian (though not all abelian groups are cyclic), and certainly not all groups are abelian. Thus, not all groups of order n will necessarily have an element of order n.

What about other possible orders?

Examples: 1) $G = \mathbb{Z}_{12}$ (cyclic)
2) $G = \mathbb{Z}_{19}$ (cyclic?)
3) $G = S_3$ (definitely not cyclic)
4) $G = S_4$ (definitely not cyclic)
Suppose G is a group of order n and $a \in G$. Then the order of a is some divisor of n; call it d. We can write $n = md$ for some positive integer m. The nth power of a is

$$a^n = a^{md} = (a^d)^m = e^m = e.$$

Let’s apply this to a familiar situation:

Suppose $a \in \mathbb{Z}_n^\times$. Then $a^{\phi(n)} = 1$. In other words, if $n > 1$ and a in an integer relatively prime to n, then $a^{\phi(n)} \equiv 1 \pmod{n}$.

Even more applications of Lagrange’s Theorem:

If G is a group of order p, where p is a prime number, then G is a cyclic group and thus abelian.

If G is a group of order less than 6, then G is abelian.

What if the order of G is 6?

What if the order of G is 8?