GROUPS OF ORDER 4

The goal here is to figure out exactly what all groups of order 2, 3, 4, 5, 6 and 7 are.

We’ve already seen that groups of order 2, 3, 5 and 7 are all cyclic, since 2, 3, 5 and 7 are prime numbers. Thus, we know all about such groups; they are essentially the integers modulo \(n \) for \(n = 2, 3, 5 \) and 7. For example, if \(G \) is a group of order 3, it is cyclic; write \(G = \langle g \rangle = \{ e = g^0, g^1, g^2 \} \). Then the multiplication table for \(G \) looks exactly like the addition table for the integers modulo 3.

\[
\begin{array}{c|ccc}
\times & g^0 & g^1 & g^2 \\
g^0 & g^0 & g^1 & g^2 \\
g^1 & g^1 & g^2 & g^0 \\
g^2 & g^2 & g^0 & g^1 \\
\end{array}
\]

That leaves us with groups of order 4 and 6. We saw last week that a group of order 4 must be abelian, but let’s go over it again (this time with a little more experience under our belts).

Suppose \(G \) is a group of order 4. Then by Lagrange’s theorem, an element of \(G \) has order 1, 2 or 4. Of course, the only element with order 1 is the identity. If there is an element of order 4, then \(G \) is cyclic and essentially the integers modulo 4 (its multiplication table will look exactly like the addition table for the integers modulo 4).

So let’s suppose for that no element of \(G \) has order 4. Then all elements have order 1 or 2. In other words, \(x^2 = e \) for all \(x \in G \). By a previous exercise, \(G \) is abelian. But we want to say more. Write \(G = \{ e, a, b, ab \} \). The multiplication table for \(G \) must be (since \(G \) is abelian) as follows:

\[
\begin{array}{c|cccc}
\times & e & a & b & ab \\
e & e & a & b & ab \\
a & a & e & ab & b \\
b & b & ab & e & a \\
ab & ab & b & a & e \\
\end{array}
\]

Is this table familiar?