CAN TWO GROUPS BE THE SAME WITHOUT BEING EQUAL?

On Wednesday we found that a group of order 6 which is not abelian must have an element of order 2 (call it \(f \)) and an element of order 3 (call it \(g \)) with \(fg \neq gf \). The multiplication table is

\[
\begin{array}{cccccc}
\times & e & f & g & g^2 & fg \\
\hline
 e & e & f & g & g^2 & fg \\
f & f & e & fg & g & g^2 \\
g & g & gf & g^2 & e & fg \\
g^2 & g^2 & fg & e & g & gf \\
fg & fg & g^2 & gf & f & e \\
gf & gf & g & fg & g^2 & e \\
\end{array}
\]

Note how \(f, fg \) and \(gf \) are all order 2, \(g \) and \(g^2 \) are order 3, and no element of order 2 commutes with an element of order 3.

We can apply this to the group \(S_3 \). Here we of course have \(e = (1) \), but past that we have choices. For instance, we could use \(f = (1, 2) \) and \(g = (1, 2, 3) \). We could also have \(f = (1, 3) \) and \(g = (1, 2, 3) \). Really the only restriction is that \(f \) must be one of the elements of order 2 and \(g \) must be one of the elements of order 3.

Clearly the \(e, f, g, \ldots \) are just names we chose for these elements. After all, “\(f \)” is a lot shorter (and fits in a table better) than “the function from the set consisting of the numbers 1, 2 and 3 to this set which sends 1 to 2, 2 to 1, and 3 to 3.”

The invertible \(2 \times 2 \) matrices with entries in the integers modulo 2 are:

\[
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix},
\begin{pmatrix}
1 & 1 \\
0 & 1
\end{pmatrix},
\begin{pmatrix}
0 & 1 \\
1 & 1
\end{pmatrix}
\]

As usual, the first matrix here is the identity. The second (as you can check) has order 2 and the third has order 3. They don’t commute. So this group has the exact same multiplication table! We could, for example, set

\[
f = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad g = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}
\]

So, while these are different groups, they really are the same. The only real difference is the names we choose for the elements.