1. Find the velocity, speed and acceleration of the particle with position given by \(\mathbf{r}(t) = t^2 \mathbf{i} - \sin t \mathbf{j} + \tan^{-1} t \mathbf{k} \).

The velocity is the derivative of position,

\[
\mathbf{r}'(t) = 2t \mathbf{i} - \cos t \mathbf{j} + \frac{1}{1 + t^2} \mathbf{k}.
\]

The speed is the magnitude of velocity,

\[
|\mathbf{r}'(t)| = \sqrt{(2t)^2 + (\cos t)^2 + (1 + t^2)^{-2}}.
\]

The acceleration is the derivative of velocity,

\[
\mathbf{r}''(t) = 2 \mathbf{i} + \sin t \mathbf{j} - 2t(1 + t^2)^{-2} \mathbf{k}.
\]

2. Let \(w = xyz - \sin(x + z) + \cos y \), where \(x = s \cos t \), \(y = \sin t + s \) and \(z = e^{st} \). Use the chain rule to find \(\partial w/\partial s \) and \(\partial w/\partial t \).

Find the two total derivatives (matrices of partial derivatives) first. One is

\[
\left(\frac{\partial w}{\partial x} \frac{\partial w}{\partial y} \right) = \left(\begin{array}{ccc}
yz - \cos(x + z) & xz - \sin y & xy - \cos(x + z) \\
\end{array} \right)
\]

and the other is

\[
\left(\begin{array}{ccc}
\cos t & -s \sin t & 1 \\
-\sin t & \cos t & 0 \\
te^{st} & 0 & se^{st} \\
\end{array} \right).
\]

By the chain rule, \(\left(\frac{\partial w}{\partial s} \frac{\partial w}{\partial t} \right) \) is the product of these two matrices, which is

\[
\left(\begin{array}{ccc}
yz - \cos(x + z) & xz - \sin y & xy - \cos(x + z) \\
\end{array} \right) \left(\begin{array}{ccc}
\cos t & -s \sin t & 1 \\
-\sin t & \cos t & 0 \\
te^{st} & 0 & se^{st} \\
\end{array} \right).
\]

3. Evaluate the following limits.
a) \[\lim_{(x,y,z) \rightarrow (0,0,0)} \frac{x^2 + y^2 + z^2}{x^2 - y^2 - z^2} \]

Convert to spherical coordinates. The numerator is just \(\rho^2 \). There is also a \(\rho^2 \) factor in the denominator, \(\rho^2 (\cos^2 \theta \sin^2 \phi - \sin^2 \theta \sin^2 \phi - \cos^2 \phi) \). The limit is equal to

\[
\lim_{\rho \rightarrow 0^+} \frac{\rho^2}{\rho^2 (\cos^2 \theta \sin^2 \phi - \sin^2 \theta \sin^2 \phi - \cos^2 \phi)} = \lim_{\rho \rightarrow 0^+} \frac{1}{\cos^2 \theta \sin^2 \phi - \sin^2 \theta \sin^2 \phi - \cos^2 \phi},
\]

which clearly doesn’t exist since it depends on the angles \(\theta \) and \(\phi \).

b) \[\lim_{(x,y) \rightarrow (0,0)} \frac{x^2 y - xy^2}{x^2 + y^2} \]

Convert to polar coordinates. This limit is

\[
\lim_{r \rightarrow 0^+} \frac{r^3 \cos^2 \theta \sin \theta - r^3 \cos \theta \sin^2 \theta}{r^2} = \lim_{r \rightarrow 0^+} r (\cos^2 \theta \sin \theta - \cos \theta \sin^2 \theta) = 0.
\]

4. Let \(f(x, y) = xye^x \). Find the directional derivative of \(f \) at the point \((1, 2) \) in the direction of \((2, 1) \).

The directional derivative is the dot product of the gradient with the direction. First,

\[
\nabla f = \langle f_x, f_y \rangle = \langle ye^x + xye^x, xe^x \rangle.
\]

So

\[
\nabla f(1, 2) = \langle 4e, e \rangle.
\]

Next, the direction of \(\langle 1, 2 \rangle \) is \(\sqrt{5}^{-1} \langle 1, 2 \rangle \). So the directional derivative is \(\sqrt{5}^{-1} 6e \).

5. Find the absolute maximum and minimum values of \(x^2 - 2xy + y \) on the rectangle \(R = \{(x, y): -1 \leq x \leq 1, -2 \leq y \leq 2 \} \).

The first step is to find the critical points inside the rectangle. To do that, you solve \(f_x = f_y = 0 \). In this case, we get \(2x - 2y = -2x + 1 = 0 \), and the only solution is \((1/2, 1/2) \) (which is in the rectangle). At this point, the function value is \(1/4 \).

Next, we parametrize the boundary of the rectangle. This is best done in four pieces. The top of the rectangle is given by

\[
x = t, \quad y = 2, \quad -1 \leq t \leq 1.
\]
The right hand side is given by
\[x = 1, \ y = t, \ -2 \leq t \leq 2. \]

The bottom is given by
\[x = t, \ y = -2, \ -1 \leq t \leq 1. \]

The left hand side is given by
\[x = -1, \ y = t, \ -2 \leq t \leq 2. \]

On the top of the rectangle, the function \(f \) is given by
\[f(t, 2) = t^2 - 4t + 2, \ -1 \leq t \leq 1, \]
which (as you can check) has an absolute maximum of \(f(-1, 2) = 7 \) and an absolute minimum of \(f(1, 2) = -1 \).

On the right hand side of the rectangle, the function \(f \) is given by
\[f(1, t) = 1 - t, \ -2 \leq t \leq 2, \]
which has an absolute maximum of \(f(1, -2) = 3 \) and an absolute minimum of \(f(1, 2) = -1 \).

On the bottom of the rectangle, the function \(f \) is given by
\[f(t, -2) = t^2 + 4t - 2, \ -1 \leq t \leq 1, \]
which has an absolute maximum of \(f(1, -2) = 3 \) and an absolute minimum of \(f(-1, -2) = -5 \).

Finally, on the left hand side of the rectangle, the function \(f \) is given by
\[f(-1, t) = 1 + 3t, \ -2 \leq t \leq 2, \]
which has an absolute maximum of \(f(-1, 2) = 7 \) and an absolute minimum of \(f(-1, -2) = -5 \).

The absolute maximum of \(f \) on the rectangle is \(f(-1, 2) = 7 \) and the absolute minimum is \(f(-1, -2) = -5 \).

6. Find the linearization of \(f(x, y) = e^{x+y} - \ln(x^2 + y^2) \) at the point \((0,1)\) and use this to approximate \(f(.1, .9) \).
The linearization of f at $(0, 1)$ is

$$L(x, y) = f_x(0, 1)(x - 0) + f_y(y - 1) + f(0, 1).$$

The partial derivatives are

$$f_x = e^{x+y} - 2x/(x^2 + y^2) \quad \text{and} \quad f_y = e^{x+y} - 2y/(x^2 + y^2).$$

The function value is

$$f(0, 1) = e.$$

Plugging $x = 0$ and $y = 1$ into the partial derivatives, you get

$$L(x, y) = e(x - 0) + (e - 2)(y - 1) + e.$$

Finally, $f(.1, .9)$ is approximately

$$L(.1, .9) = e(.1) + (e - 2)(-.1) + e.$$