Dedekind’s Theorem (one of them, anyway)
Math 581, Spring 2006

Background information: For our purposes here, “ring” will mean commutative ring with identity. You should remind yourself of the definition for a ring homomorphism. Recall that the kernel of a ring homomorphism is an ideal, and that given an ideal, there is a homomorphism (the canonical map) with kernel equal to that ideal. The ideal is maximal if and only if the image of the canonical map is a field.

If \(R \) is a ring and \(\phi \) is a ring homomorphism on \(R \), then we get an induced homomorphism \(\bar{\phi} \) on the polynomial ring \(R[X] \) by letting \(\phi \) act on the coefficients:

\[
\bar{\phi}(r_nX^n + r_{n-1}X^{n-1} + \cdots + r_0) := \phi(r_n)X^n + \phi(r_{n-1})X^{n-1} + \cdots + \phi(r_0).
\]

If \(R \) is a subring of \(S \), then for every element \(s \in S \) we also get a homomorphism from the polynomial ring \(R[X] \) into \(S \) by evaluating at \(s \):

\[
r_nX^n + r_{n-1}X^{n-1} + \cdots + r_0 \mapsto r_n s^n + r_{n-1} s^{n-1} + \cdots + r_0.
\]

Recall that the polynomial ring \(F[X] \) is a Euclidean domain via the usual division algorithm for polynomials whenever \(F \) is a field. It is thus a principal ideal domain and a unique factorization domain. In particular, if \(P(X) \in F[X] \) is an irreducible polynomial and we let \((P(X)) \) denote the principal ideal generated by \(P(X) \), then the quotient ring \(F[X]/(P(X)) \) is an extension field of \(F \) of degree equal to the degree of \(P(X) \).

As usual, \(K \) will denote a number field with ring of integers \(\mathcal{O}_K \). The upper case script German (“fraktur”) font will be used to denote fractional ideals and the lower case Greek font will be used to denote elements of \(K \).

We’ll denote the finite field with \(q \) elements by \(\mathbb{F}_q \).

Theorem: Suppose \(\mathcal{O}_K = \mathbb{Z}[\alpha] \) and \(p \) is a prime number. Let \(P(X) \in \mathbb{Z}[X] \) be the minimal polynomial for \(\alpha \) and let \(\overline{P}(X) \) denote the image of \(P(X) \) under the homomorphism \(\bar{\phi} \) from \(\mathbb{Z}[X] \) to \(\mathbb{F}_p[X] \) induced by the canonical map \(\phi: \mathbb{Z} \to \mathbb{F}_p \). If

\[
\overline{P}(X) = \overline{P}_1^{f_1}(X) \cdots \overline{P}_r^{f_r}(X)
\]

is the factorization of \(\overline{P} \) into a product of monic irreducible polynomials, then the principal ideal generated by \(p \) in \(\mathcal{O}_K \) factors as

\[
(p) = \mathfrak{P}_1^{e_1} \cdots \mathfrak{P}_r^{e_r},
\]

where the residue class degree of each \(\mathfrak{P}_i \) is \(f_i := \deg P_i(X) \). Further,

\[
\mathfrak{P}_i = \gcd(p, P_i(\alpha))
\]

for each \(i \), where \(\bar{\phi}(P_i(X)) = \overline{P}_i(X) \).

Proof: Fix an \(i \) for the moment and let \(\alpha_i \) be a root of \(\overline{P}_i(X) \) in some extension field. We then have the commutative diagram

\[
\begin{array}{ccc}
\mathbb{Z}[X] & \xrightarrow{\theta_1} & \mathbb{Z}[\alpha] = \mathcal{O}_K \\
\bar{\phi} \downarrow & & \theta_3 \downarrow \\
\mathbb{F}_p[X] & \xrightarrow{\theta_2} & \mathbb{F}_p[\alpha_i] \cong \mathbb{F}_q
\end{array}
\]
where θ_1 and θ_2 are evaluation maps and

$$\theta_3(z_n\alpha^n + z_{n-1}\alpha^{n-1} + \cdots + z_0) = \phi(z_n)\alpha_i^n + \phi(z_{n-1})\alpha_i^{n-1} + \cdots + \phi(z_0).$$

Note that the kernel of θ_1 is the principal ideal generated by $P(X)$ and the kernel of θ_2 is the principal ideal generated by $P_i(X)$, so that

$$\mathbb{F}_p[\alpha_i] \cong \mathbb{F}_p[X]/(P_i(X)) \cong \mathbb{F}_q,$$

where $q = p^{f_i}$. This implies that the kernel of θ_3 is a maximal ideal of \mathcal{O}_K; call it \mathfrak{P}_i. The residue class degree of \mathfrak{P}_i is f_i since $\mathcal{O}_K/\mathfrak{P}_i \cong \mathbb{F}_q$.

Consider the kernel of the composition $\theta := \theta_3 \circ \theta_1 = \theta_2 \circ \phi$. Since the kernel of ϕ is the principal ideal in $\mathbb{Z}[X]$ generated by p and the kernel of θ_2 is the principal ideal generated by $P_i(X)$, the kernel of θ is the ideal of $\mathbb{Z}[X]$ generated by p and $P_i(X)$. Thus, the kernel of θ_3 is generated by $\theta_1(p) = p$ and $\theta_1(P_i(X)) = P_i(\alpha)$. In other words, $\mathfrak{P}_i = \gcd(p, P_i(\alpha))$.

Now $P(X) = P_i^{e_1}(X) \cdots P_i^{e_r}(X)$ if and only if $P(X) - P_i(X)^{e_1} \cdots P_i(X)^{e_r} \in \ker \phi$, and this in turn implies that $P_i(\alpha)^{e_1} \cdots P_i(\alpha)^{e_r} \in (p)$. Since $P_i^{e_i} \leq \gcd(p, P_i(\alpha)^{e_i})$ for each i, we see that $(p) \supseteq \mathfrak{P}_1^{e_1} \cdots \mathfrak{P}_r^{e_r}$. Taking norms and noting that $e_1 f_i + \cdots + e_r f_r = \deg P(X) = [K: \mathbb{Q}]$, we see that $N((p)) = N(\mathfrak{P}_1^{e_1} \cdots \mathfrak{P}_r^{e_r})$. Hence $(p) = \mathfrak{P}_1^{e_1} \cdots \mathfrak{P}_r^{e_r}$ and e_i must be the ramification index of \mathfrak{P}_i for each i.

2