1. a) Find parametric equations for the line through the points \(P(1,2,3) \) and \(Q(-1,5,2) \).

b) Find the distance from the point \(R(2,3,4) \) to the line in part a.

2. a) The points \(P, Q \) and \(R \) from #1 are three vertices of a parallelogram. Find the fourth vertex and the area of this parallelogram.

b) Find an equation of the plane through \(P, Q \) and \(R \).

3. Find spherical and cylindrical coordinates for the point with rectangular coordinates \((\sqrt{6}, \sqrt{6}, 2)\).

4. Describe the traces of the surface given by \(x^2 + y^2 - 2z^2 = 0 \) in the planes \(x = k, \ y = k \) and \(z = k \). Use these traces to help sketch this surface.

5. Find an equation for the tangent line to the parametric curve \(x = \sin(2t), \ y = e^t \) at the point \((0,1) \).

6. a) Plot at least 12 points by hand and accurately sketch the polar curve \(r = 2\sin(3\theta) \).

b) Compute the area in one “petal” of the curve in part a.