A Generic Euclid’s Lemma

Definition: An element p of \mathbb{Z} or $\mathbb{Q}[X]$ is called a *unit* if $p|1$. An element p is called *irreducible* if p is not a unit and, whenever $a|p$, either $p|a$ or $a|1$ (a is a unit).

Note that 0 is definitely not irreducible. Also, all prime integers are irreducible. In fact, the irreducible integers are exactly the primes and their negatives (since the only integers that divide 1 are ± 1.) The units of \mathbb{Z} are just ± 1. The units of $\mathbb{Q}[X]$ are the non-zero constants. Generally speaking, any time p is irreducible, so is $u \cdot p$ for any unit u.

Euclid’s Lemma: Suppose p is irreducible and $p|ab$. Then either $p|a$ or $p|b$.

NOTE: This version of Euclid’s Lemma is for *both* integers and polynomials. The proof is valid in either case, too!

Proof: It is not difficult to see that the set of linear combinations of p and a is an ideal; call it I. By a previous result (Theorem 1.1.4 for integers and the analogous result for polynomials), I consists of all multiples of some d. Since $p \neq 0$, d can’t be 0.

Since both a and p are in I, d divides both a and p. But p is irreducible, so either $p|d$ or $d|1$.

Suppose first that $p|d$. Since $d|a$, exercise #7b from section 1.1 implies that $p|a$.

Now suppose that $d|1$ and write $1 = dc$. Since d is in I, there are x and y such that $d = ax + py$.

Then

\[
1 = dc = (ax + py)c = axc + pyc \\
1b = (axc + pyc)b = abxc + pycb \\
b = axcb + pycb.
\]

Recall the original hypothesis that $p|ab$. By #7c, this implies that $p|ab(xc) + p(ycb)$. Thus, $p|b$.

1