Math 621 Spring 2013
Week 8: Products of Rings

Major Definitions: Direct product and direct sum

Major Theorems: Chinese Remainder Theorem

Exercises: (remember our conventions on rings and modules)

1. Let R_1, R_2, \ldots, R_n be rings. Show that the ideals of the finite direct product ($= \text{direct sum}$) $\prod_{i=1}^{n} R_i$ are of the form $\prod_{i=1}^{n} I_i$, where I_i is an ideal of R_i for each i.

2. Let R be a ring. For the moment let the endomorphisms of R act on the right, so that if $f, g \in \text{End}(R)$, then fg acts on R by rfg (f first, then g). This is how we let $n \times n$ matrices act on row-vectors in \mathbb{R}^n, for example. Using this convention, prove that $\text{End}(R)$ and R are isomorphic as left R-modules.

3. Let m and n_1, n_2, \ldots, n_m be positive integers. Let S_1, \ldots, S_m be simple pair-wise non-isomorphic R-modules. Prove that

$$\text{End}\left(\bigoplus_{i=1}^{m} \left(\bigoplus_{j=1}^{n_i} S_i\right)\right) \cong \bigoplus_{i=1}^{m} \text{End}\left(\bigoplus_{j=1}^{n_i} S_i\right).$$