This course is essentially the study of arithmetic functions and their statistical behavior.

Definition: An arithmetic function is a function $f : \mathbb{Z}^+ \rightarrow \mathbb{C}$. Such a function is called multiplicative if $f(mn) = f(m)f(n)$ whenever m and n are relatively prime positive integers. A multiplicative function is called totally multiplicative if $f(mn) = f(m)f(n)$ for all positive integers m and n.

Example 1: The prime counting function is defined by

$$
\pi(n) := \sum_{\substack{p \leq n \\ p \text{ prime}}} 1.
$$

As with many arithmetic functions, this function is extended to $[0, \infty)$ by setting $\pi(x) = \pi([x])$, where $[\cdot]$ denotes the greatest integer (or “floor”) function. Thus

$$
\pi(x) := \sum_{\substack{p \leq x \\ p \text{ prime}}} 1.
$$

Example 2: Euler’s phi function is given by

$$
\phi(n) = \sum_{\substack{1 \leq d \leq n \\ \gcd(d,n) = 1}} 1.
$$

It isn’t transparent from the definition that this function is multiplicative, but we’ll soon see that it is.

Example 3: The Möbius mu function is given by

$$
\mu(n) = \begin{cases}
(-1)^m & \text{if } n \text{ is a product of } m \text{ distinct primes,} \\
0 & \text{otherwise.}
\end{cases}
$$

This function arises naturally when one attempts to “invert” (in a certain arithmetic sense) arithmetic functions and certain sums of arithmetic functions. This function is clearly multiplicative.

Exercise 1: Show that

$$
\sum_{n \geq 1} \frac{\mu(n)}{n^s} = \frac{1}{\zeta(s)}
$$

for all $s > 1$, where $\zeta(s) = \sum_{n \geq 1} n^{-s}$.

Example 4: It is often useful to have a concise notation for the number of prime factors of a number; this is typically denoted

$$
\omega(n) = \sum_{\substack{p | n \\ p \text{ prime}}} 1.
$$
Example 5: One often is interested in the factors of a given positive integer, and sums involving these factors. The two most common associated functions here are

\[\tau(n) = \sum_{1 \leq d \leq n \atop d \mid n} 1 \]

and

\[\sigma(n) = \sum_{1 \leq d \leq n \atop d \mid n} d. \]

Example 6: The following three multiplicative functions arise naturally when one considers the algebraic structure of the set of multiplicative functions (which we will do below):

\[U(n) = 1 \]

\[E(n) = n \]

\[I(n) = \begin{cases} 1 & \text{if } n = 1, \\ 0 & \text{otherwise.} \end{cases} \]

Definition: The “Dirichlet product,” or **convolution** is the binary operation on the set of arithmetic functions given by

\[f \ast g(n) = \sum_{1 \leq d \leq n \atop d \mid n} f(d)g(n/d) = \sum_{1 \leq d_1, d_2 \atop n = d_1d_2} f(d_1)g(d_2). \]

One notes immediately that this operation is commutative. A moment’s reflection shows that it is associative as well. Moreover, \(I \ast f = f \) for all arithmetic functions \(f \). Thus, it is reasonable to wonder if the arithmetic functions form an abelian group under convolution, with \(I \) as the identity element. Indeed, this is almost the case.

Lemma 1: An arithmetic function \(f \) is invertible (i.e., there is an arithmetic function \(f^{-1} \) with \(f \ast f^{-1} = I \)) if and only if \(f(1) \neq 0 \), in which case the inverse is unique.

Proof: Suppose first that there is an \(f^{-1} \) with \(f \ast f^{-1} = I \). Then \(f \ast f^{-1}(1) = f(1)f^{-1}(1) = I(1) = 1 \), so that \(f(1) \neq 0 \). Moreover, we see from this equation that \(f^{-1}(1) \) is completely determined by \(f(1) \).

Now assume \(f(1) \neq 0 \). We will construct \(f^{-1} \) by induction, that is, we will explicitly define \(f^{-1}(n) \) by induction on \(n \). As noted above, \(f^{-1}(1) \) is given by \(f(1)f^{-1}(1) = 1 \). Now assume that \(n > 1 \) and that \(f^{-1}(i) \) is defined for all \(1 \leq i < n \). Then the equation

\[0 = I(n) = f \ast f^{-1}(n) = f(1)f^{-1}(n) + \sum_{1 \leq d < n \atop d \mid n} f^{-1}(d)f(n/d) \]

determines \(f^{-1}(n) \).

Lemma 2: We have \(\mu \ast U = I \).
Proof: This amounts to saying that
\[\sum_{1 \leq d \leq n} \mu(d) = \begin{cases} 1 & \text{if } n = 1, \\ 0 & \text{otherwise}. \end{cases} \]

This is obviously the case when \(n = 1 \), so suppose that \(n > 1 \) and write \(n = p^e m \) where \(p \) is a prime, \(e \) and \(m \) are positive integers and \(p \nmid m \). Now we have
\[\sum_{1 \leq d \leq n} \mu(d) = \sum_{1 \leq d \leq n} \mu(d) + \sum_{1 \leq d \leq n} \mu(dp) = 0. \]

Lemma ("Möbius Inversion"): If \(f \) and \(g \) are arithmetic functions with \(g = U \ast f \), then \(f = \mu \ast g \).

Proof: By associativity of convolution and Lemma 2,
\[\mu \ast (U \ast f) = (\mu \ast U) \ast f = I \ast f = f. \]

Theorem: The multiplicative functions form a group under convolution.

Proof: All that remains is to show that the set of multiplicative functions is closed under convolution and taking inverses. Suppose \(f \) and \(g \) are multiplicative functions and \(m \) and \(n \) are relatively prime positive integers. Then
\[f \ast g(mn) = \sum_{1 \leq d \leq mn \atop d \mid mn} f(d)g(mn/d) \]
\[= \sum_{1 \leq d_1, d_2 \leq mn \atop d_1 \mid m \atop d_2 \mid n} f(d_1 d_2)g(mn/d_1 d_2) \]
\[= \sum_{1 \leq d_1, d_2 \leq mn \atop d_1 \mid m \atop d_2 \mid n} f(d_1) f(d_2) g(m/d_1) g(m/d_2) \]
\[= (f \ast g(m))(f \ast g(n)), \]
since \(d_1 \) and \(d_2 \) are necessarily relatively prime above, as are \(m/d_1 \) and \(m/d_2 \).

Finally, since \(f \) is multiplicative we must have \(f(1) = 1 \), so that \(f^{-1} \) exists (and is unique) by Lemma 1. Set
\[g(n) := \prod_{p \mid n \atop p \text{ prime}} f^{-1}(p^{\text{ord}_p(n)}), \]

where \(\text{ord}_p(n) \) denotes the exact power of the prime \(p \) that divides \(n \). This function \(g \) is multiplicative by definition and agrees with \(f^{-1} \) on prime powers. By what we have already shown, \(f \ast g \) is multiplicative. Since \(g(m) = f^{-1}(m) \) whenever \(m \) is a prime power, we immediately get \(f \ast g(m) = f \ast f^{-1}(m) = I(m) \) whenever \(m \) is a prime power. But \(I \) is multiplicative, so the two multiplicative functions \(f \ast g \) and \(I \) must
be equal since they agree on prime powers. Since \(f^{-1} \) was unique, we must have \(g = f^{-1} \), so that \(f^{-1} \) is multiplicative.

The Theorem can by a useful tool to show that a function is multiplicative. For example, we have

\[
E * U(n) = \sum_{1 \leq d \leq n \atop d|n} E(d)U(n/d) = \sum_{1 \leq d \leq n \atop d|n} d = \sigma(n),
\]

so that the divisor sum \(\sigma \) is multiplicative.

Exercise 2: Find a general formula for \(\sigma_s(p^r) \), where \(p \) is a prime, \(r \) is a positive integer, \(s \) is an integer, and

\[
\sigma_s(n) := \sum_{1 \leq d \atop d|n} d^s.
\]

Exercise 3: Find formulas for \(\sigma^* \phi, \mu^* \tau \) and \(\mu^* \sigma \) in terms of the functions \(I, U \) and \(E \).

Lemma 4: We have \(\phi = E * \mu \). In particular, \(\phi \) is multiplicative.

Proof: We have \(\phi * U(n) = \sum_{d|n} \phi(d) \). Consider the set of rational numbers \(\{1/n, 2/n, \ldots, n/n\} \). This is a set of \(n \) distinct elements, each of which has a unique representation of the form \(\frac{a}{d} \), where \(a < d \) is a positive integer relatively prime to \(d \) and \(d|n \). Since there are exactly \(\phi(d) \) such representations with a given denominator \(d \), we get \(\sum_{d|n} \phi(d) = n \). Hence \(\phi * U = E \), so that \(\phi = E * \mu \) by Lemma 2.

One last arithmetic function we’ll define here is the **von Mangoldt Lambda function**. It is defined by

\[
\Lambda(n) = \begin{cases}
\log p & \text{if } n = p^r \text{ for some prime } p \text{ and non-negative integer } r, \\
0 & \text{otherwise.}
\end{cases}
\]

This function will be used extensively in our investigations into the prime counting function. Though it isn’t multiplicative (since \(\Lambda(1) = 0 \)), it still has some interesting convolution properties. To wit:

\[
\Lambda * U(n) = \sum_{1 \leq d \leq n \atop d|n} \Lambda(d)U(n/d)
\]

\[
= \sum_{1 \leq d \leq n \atop d|n} \Lambda(d)
\]

\[
= \sum_{p^i|d \atop p \text{ prime}} \log p
\]

\[
= \sum_{i=1}^{l} e_i \log p_i \quad \text{where } n = p_1^{e_1} \cdots p_l^{e_l}
\]

\[
= \sum_{i=1}^{l} e_i \log p_i
\]

\[
= \log n.
\]
Therefore, by Möbius Inversion and Lemma 2

\[\Lambda(n) = \mu * \log(n) \]

\[= \sum_{1 \leq d \leq n} \mu(d) \log(n/d) \]

\[= \sum_{1 \leq d \leq n} \mu(d) \log n - \sum_{1 \leq d \leq n} \mu(d) \log d \]

\[= \log n \sum_{1 \leq d \leq n, d | n} \mu(d) - \sum_{1 \leq d \leq n, d | n} \mu(d) \log d \]

\[= \log 1 - \sum_{1 \leq d \leq n, d | n} \mu(d) \log d \]

\[= - \sum_{1 \leq d \leq n, d | n} \mu(d) \log d. \]