A Clever Use for Congruences

Fermat’s (Little) Theorem says that if \(p \) is a prime number and \(a \) is any integer, then \(a^p \equiv a \mod p \).

As a consequence, we have the following:

Lemma: If \(p \) is a positive number and there is some integer \(a \) with \(a^p \not\equiv a \mod p \), then \(p \) is a composite number. If there is some positive integer \(a < p \) with \(a^{p-1} \not\equiv 1 \mod p \), then \(p \) is a composite number.

We can use this lemma to show certain numbers are composite. For example, let’s look at \(p = 1111 \) and use \(a = 2 \).

We can go even further and use exercise #24 from section 1.4: once we have an even power of \(a \) congruent to 1, say \(a^{2n} \equiv 1 \mod p \), is \(a^n \equiv \pm 1 \mod p \)?