Recall that our goal is to show that \(\mathbb{Z}_p^\times \) is cyclic when \(p \) is a prime number. Here's what we have so far:

- \(\mathbb{Z}_p^\times \) is a finite abelian group of order \(p-1 \).
- By Lagrange’s theorem \([a]_p^{p-1} = 1 \) for all \([a]_p \in \mathbb{Z}_p^\times \).
- There is a smallest number \(n \) such that \([a]_p^n = 1 \) for all \([a]_p \in \mathbb{Z}_p^\times \). This number \(n \) is called the exponent of the group \(\mathbb{Z}_p^\times \).
- This number \(n \) is no greater than \(p-1 \).
- There is an element of \(\mathbb{Z}_p^\times \) whose order is this number \(n \).

The goal, then, is to show that this number \(n \) is equal to \(p-1 \).

Now this is all just from the theory of groups. Since not all groups of order \(p-1 \) are cyclic, there must be something special about \(\mathbb{Z}_p^\times \). Notice that we’ve only used multiplication; we can also add elements of \(\mathbb{Z}_p^\times \) together. In other words, we haven’t used the fact that \(\mathbb{Z}_p \) is a field.

Definition: Suppose \(F \) is a field. An element \(a \in F^\times \) is called a *root of unity* if \(a^n = 1 \) for some positive integer \(n \). In other words, the roots of unity of \(F \) are the elements of the group \(F^\times \) of finite order.

Note that the set of roots of unity of a field is a subgroup of the group of non-zero elements of the field.

Examples:

1) \(\mathbb{R} \)

2) \(\mathbb{Z}_p \)

3) \(\mathbb{C} \)
Theorem 2: Suppose F is a field with finitely many roots of unity. Then the group of roots of unity is cyclic. In particular, the group \mathbb{Z}_p^\times is cyclic for any prime number p.

Proof: Let U denote the group of roots of unity and let m denote its order. Since U is a finite abelian group, it has a finite exponent; call it n. Then $a^n = 1$ for all $a \in U$ and $n \leq m$. Moreover, there is an element of U of order n.

Now each $a \in U$ is a root of the polynomial $X^n - 1$. This is a polynomial with coefficients in F. For any $a \in U$ we can use the division algorithm for polynomials with coefficients in F and write

$$X^n - 1 = Q(X)(X - a) + R(X),$$

where the degree of $R(X)$ is no greater than zero. Since a is a root of both $X^n - 1$ and $X - a$, it must also be a root of $R(X)$. But since the degree of $R(X)$ is no greater than zero, $R(X)$ must be 0. In this way we see that the monic degree one polynomial $X - a$ divides the polynomial $X^n - 1$ for all roots of unity a.

There are m roots of unity, and corresponding to each of these roots of unity is a distinct monic polynomial of degree one that divides $X^n - 1$. Denote the product of these m monic polynomials of degree one by $P(X)$; the degree of $P(X)$ is m. Since polynomials of degree 1 are irreducible, we have m distinct monic irreducible factors of the polynomial $X^n - 1$. According to the Fundamental Theorem of Arithmetic for polynomials, the product $P(X)$ of these distinct monic irreducible polynomials must divide $X^n - 1$.

We have constructed a polynomial $P(X)$ of degree m that divides the polynomial $X^n - 1$ of degree n. This implies that $m \leq n$, and since we already knew $n \leq m$, we must have $n = m$. Since U has an element of order $n = m$, which is the order of U, the group U must be cyclic.