References


Please note that access to the copyrighted material linked on this page may require a subscription from your institution. Most of the articles require JSTOR access. In most cases you will be able to access a abstract, and in many cases the article of interest may be available for purchase from the publisher.

Jump to A B C D E Efron F G H HallJ K L M N O P R S T W Z


A

Adkins, L. C. and Hill, R. C. (1990). An improved confidence ellipsoid for linear regression models.   Journal of Statistical Computation and Simulation, 36, 9-18.

Agresti, A. and Coull, B. A. (1998). Approximate is better than ``exact" for interval estimation of binomial proportions. The American Statistician, 52, 119-126.

Ahrens, L. H. (1965). Observations on the Fe-Si-Mg relationship in chondrites. Geochimica et Cosmochimica Acta, 29, 801-806.

Akritas, M. G. (1986). Bootstrapping the Kaplan-Meier estimator. Journal of the American Statistical Association, 81, 1032-1038.

Apostol, T. M. (1967). Calculus: Volume I. John Wiley and Sons, New York.

Azzalini, A. and Bowman, A. W. (1990). A look at some data on the Old Faithful geyser. Applied Statistics, 39, 357-365.

 

B

Barber, S. and Jennison, C. (1999). Symmetric tests and confidence intervals for survival probabilities and quantiles of censored survival data. Biometrics, 55, 430-436.

Barndorff-Nielsen, O. E. and Cox, D. R. (1989). Asymptotic Techniques for Use in Statistics. London.

Bhattacharya, R. N. and Ghosh, J. K. (1978). On the validity of the formal Edgeworth expansion. The Annals of Statistics, 6, 435-451.

Billingsley, P. (1999). Convergence of Probability Measures. John Wiley and Sons, New York.

Booth, J. G. and Sarkar, S. (1998). Monte Carlo approximation of bootstrap variances. The American Statistician, 52, 354-357.

Bowman, A. W. (1984). An alternative method of cross-validation for the smoothing of density estimates. Biometrika, 71, 353-360.

Bowman, A. W. and Azzalini, A. (1997). Applied Smoothing Techniques for Data Analysis. Oxford Press, Oxford.

Boyce, M. S. (1987). Time-series analysis and forecasting of the Aransas/Wood Buffalo Whooping Crane population. Proceedings of the 1985 Crane Workshop. J. C. Lewis, Editor. Platte River Whooping Crane Habitat Maintenance Trust, Grand Island, Nebraska, U. S. A., 1-9.

Braun, J. and Hall, P. (2001). Data sharpening for nonparametric inference subject to constraints. Journal of Computational and Graphical Statistics, 10, 786-806.

Brown, L. D., Cai, T. T., and DasGupta, A. (2003). Interval estimation in exponential families. Statistica Sinica, 13, 19-49.



C

Canadian Wildlife Service and U. S. Fish and Wildlife Service (2005). Draft International Recovery Plan for the Whooping Crane. Recovery of Nationally Endangered Wildlife, Ottawa, Canada and U. S. Fish and Wildlife Service, Albuquerque, New Mexico, U. S. A.

Casella, G. and Berger, R. L. (2002). Statistical Inference, Second Edition. Duxbury, Pacific Grove, California.

Cheng, M.-Y. and Hall P. (1998). Calibrating the excess mass and dip tests of modality. Journal of the Royal Statistical Society, Series B, 60, 579-589.

Cheung, K. Y. and Lee, S. M. S. (2005). Variance estimation for sample quantiles using the m out of n bootstrap. Annals of the Institute of Statistical Mathematics, 57, 279-290.

Chikae, M., Kagan, K., Nagatani, N., Takamura, Y. and Tamiya, E. (2007). An electrochemical on-field sensor system for the detection of compost maturity. Analytica Chimica Acta, 581, 364-369.

Choi, E. and Hall, P. (1999). Data sharpening as a prelude to density estimation. Biometrika, 86, 941-947.

Chou, Y.-M. (1994). Selecting a better supplier by testing process capability indices. Quality Engineering, 18, 41-52.

Chou, Y.-M., Owen, D. B. and Borrego, A. S. A. (1990). Lower confidence limits on process capability indices. Journal of Quality Technology, 22, 239-229.

Chu, C.-K. and Marron, J. S. (1991). Choosing a kernel regression estimator. Statistical Science, 6, 404-436.

Conover, W. J. (1980). Practical Nonparametric Statistics. John Wiley and Sons, New York.

Cox, D. R. (1966). Notes on the analysis of mixed frequency distributions. British Journal of Mathematical and Statistical Psychology, 19, 39-47.

Cramer. H. (1946). Mathematical Methods of Statistics. Princeton University Press, Princeton.

Curran-Everett, D. (2000). Multiple comparisons: philosophies and illustrations. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology, 279, R1-R8.



D

Dalgaard, P. (2002). Introductory Statistics with R. Springer, New York.

Davis, C. S. (2002). Statistical Methods for the Analysis of Repeated Measures. Springer, New York.

Davison, A. C. & Hinkley, D. V. (1997). Bootstrap Methods and their Application. Cambridge, UK: Cambridge University Press.

Dennis, B., Munholland, P. L. and Scott, J. M. (1991). Estimation of growth and extinction parameters for endangered species. Ecological Monographs, 61, 115–143.

Dette, H., Munk, A. and Wagner, T. (1998). Estimating the variance in nonparametric regression-what is a reasonable choice? Journal of the Royal Statistical Society, Series B, 60, 751–764.

Devore, J. L. (2006). Probability and Statistics for Scientists and Engineers. Sixth Edition. Thomson, Belmont, CA.

Diaconis, P. and Efron, B. (1983). Computer intensive methods in statistics. Scientific American, 248, 96–108.

Donoho, D. L. (1988). One-sided inference about functionals of a density. The Annals of Statistics, 16, 1390–1420.


E

 

Efron, B. (1979). The bootstrap: Another look at the jackknife. The Annals of Statistics, 7, 1–26.

Efron, B. (1981a). Nonparametric standard errors and confidence intervals, (with discussion). Canadian Journal of Statistics, 9, 139–172.

Efron, B. (1981b). Censored data and the bootstrap. Journal of the American Statistical Association, 76, 312–319.

Efron, B. (1987). Better bootstrap confidence intervals. Journal of the American Statistical Association, 82, 171–200.

Efron, B. and Feldman, D. (1991). Compliance as an explanatory variable in clinical trials. Journal of the American Statistical Association, 86, 9–26.

Efron, B. and Gong, G. (1983). A leisurely look at the bootstrap, the jackknife, and cross validation. The American Statistician, 37, 36–48.

Efron, B., Holloran, E., and Holmes, S. (1996). Bootstrap confidence levels for phylogenetic trees. Proceedings of the National Academy of Sciences of the United States of America, 93, 13492–13434.

Efron, B. and Tibshirani, R. J. (1986). Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Statistical Science, 1, 54–57.

Efron, B. and Tibshirani, R. J. (1993). An Introduction to the Bootstrap. Chapman and Hall, New York.

Efron, B. and Tibshirani, R. J. (1996). The problem of regions. Stanford Technical Report 192.

Efron, B. and Tibshirani, R. J. (1998). The problem of regions. The Annals of Statistics, 26, 1687–1718.

Eicker, F. (1963). Asymptotic normality and consistency of the least squares estimators for families of linear regressions. The Annals of Mathematical Statistics, 34, 447–456.

Epanechnikov, V. A. (1969) Non-parametric estimation of a multivariate probability density. Theory of Probability and its Applications, 14, 153– 158.

Ernst, M. D. and Hutson, A. D. (2003). Utilizing a quantile function approach to obtain exact bootstrap solutions. Statistical Science, 18, 231–240.


F

 

Falk, M. and Kaufman, E. (1991). Coverage probabilities of bootstrap confidence intervals for quantiles. The Annals of Statistics, 19, 485–495.

Falk, M. and Reiss, R.-D. (1989). Weak convergence of smoothed and nonsmoothed bootstrap quantile estimates. The Annals of Probability, 17, 362– 371.

Feigl, P. and Zelen, M. (1965). Estimation of exponential survival probabilities with concomitant information. Biometrics, 21, 826–838.

Felsenstein, J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 783–791.

Ferguson, T. S. (1996) A Course in Large Sample Theory. Chapman and Hall, London.

Finner, H. and Strassburger, K. (2002). The partitioning principle. The Annals of Statistics, 30, 1194–1213.

Fischer, M. P. and Polansky, A. M. (2006). Influence of flaws on joint spacing and saturation: Results of one-dimensional mechanical modeling. Journal of Geophysical Research, 111, B07403, doi:10.1029/2005JB004115.

Fisher, R. A. (1915). Frequency distribution of the values of the correlation coefficient in samples from an indefinitely large population. Biometrika, 10, 507–521.

Fisher, N. I. and Marron, J. S. (2001). Mode testing via the excess mass estimate. Biometrika, 88, 499–517.

Fix, E. and Hodges, J. L. (1951). Discriminatory analysis-nonparametric discrimination: Consistency properties. Report No. 4, Project No. 21-29-004, USAF School of Aviation Medicine, Randolph Field, Texas.

Fix, E. and Hodges, J. L. (1989). Discriminatory analysis-nonparametric discrimination: Consistency properties. International Statistical Review, 57, 238–247.

Flury, B. and Riedwyl, H. (1988). Multivariate Statistics: A Practical Approach. Chapman and Hall, London.

Flynn, M. R. (2004). The beta distribution-a physically consistent model for human exposure to airborne contaminants. Stochastic Environmental Research and Risk Assessment, 18, 306–308.

Frangos, C. C., and Schucany, W. R. (1990). Jackknife estimation of the bootstrap acceleration constant. Computational Statistics and Data Analysis, 9, 271–281.

Franklin, L. A. and Wasserman, G. S. (1991). Bootstrap confidence interval estimates of Cpk: An introduction. Communications in Statistics-Simulation and Computation, 20, 231–242.

Franklin, L. A. and Wasserman, G. S. (1992a). A note on the conservative nature of the tables of lower confidence limits for Cpk with a suggested correction. Communications in Statistics-Simulation and Computation, 21, 1165–1169.

Franklin, L. A. and Wasserman, G. S. (1992b). Bootstrap lower confidence limits for capability indices. Journal of Quality Technology, 24, 196–209.

Freedman, D. A. (1981). Bootstrapping regression models. The Annals of Statistics, 9, 1218–1228.

Freedman, D. A. and Peters, S. C. (1984). Bootstrapping a regression equation: Some empirical results. Journal of the American Statistical Association, 79, 97–106.


G

 

Games, P. A. (1971). Multiple comparisons of means. American Educational Research Journal, 8, 531–565.

Garwood, F. (1936). Fiducial limits for the Poisson distribution. Biometrika, 28, 437–442.

Gasser, T., Sroka, L. and Jennen-Steinmetz, C. (1986). Residual variance and residual pattern in nonlinear regression. Biometrika, 73, 625–633.

Gelman, A. B., Carlin, J. S., Stern, H. S., and Rubin, D. B. (1995). Bayesian Data Analysis. Chapman and Hall, London.

Gibbons, J. D. and Chakraborti, S. (2003). Nonparametric Statistical Inference. Marcel Dekker, New York.

Good, I. J and Gaskins, R. A. (1980). Density estimation and bump-hunting by the penalized likelihood method exemplified by scattering and meteorite data. Journal of the American Statistical Association, 75, 42–56.


H

 

Hajek, J. (1969). Nonparametric Statistics. Holden-Day, San Francisco.

Hajek, J. and Sidak, Z. (1967). Theory of Rank Tests. Academic Press, New York.

Hall, P. (1986). On the number of bootstrap simulations required to construct a confidence interval. The Annals of Statistics, 14, 1453–1462.

Hall, P. (1988). Theoretical comparison of bootstrap confidence intervals. The Annals of Statistics, 16, 927–985.

Hall, P. (1989). Unusual properties of bootstrap confidence intervals in regression problems. Probability Theory and Related Fields, 81, 247–273.

Hall, P. (1992a). The Bootstrap and Edgeworth Expansion. Springer, New York.

Hall, P. (1992b). On bootstrap confidence intervals in nonparametric regression. The Annals of Statistics, 20, 695–711.

Hall, P., DiCiccio, T. J., and Romano, J. P. (1989). On smoothing and the bootstrap. The Annals of Statistics, 17, 692–704.

Hall, P. and Kang, K.-H. (2005). Unimodal kernel density estimation by data sharpening. Statistica Sinica, 15, 73–98.

Hall, P., Kay, J. W. and Titterington, D. M. (1990). Asymptotically optimal difference-based estimation of variance in nonparametric regression. Biometrika, 77, 521–528.

Hall, P. and Marron, J. S. (1987a). Extent to which least-squares crossvalidation minimizes integrated squared error in non-parametric density estimation. Probability Theory and Related Fields, 74, 568–581.

Hall, P. and Marron, J. S. (1987b). Estimation of integrated squared density derivatives. Statistics and Probability Letters, 6, 109–115.

Hall, P. and Marron, J. S. (1991). Local minima in cross-validation functions. Journal of the Royal Statistical Society-Series B, 53, 245–252.

Hall, P. and Martin, M. A. (1987). Exact convergence rate of bootstrap quantile variance estimator. Probability Theory and Related Fields, 80, 261– 268.

Hall, P. and Martin, M. A. (1988). On bootstrap resampling and iteration. Biometrika, 75, 661–671.

Hall, P. and Martin, M. A. (1989). A note on the accuracy of bootstrap percentile method confidence intervals for a quantile. Statistics and Probability Letters, 8, 197–200.

Hall, P. and Minnotte, M. C. (2002). High order data sharpening for density estimation. Journal of the Royal Statistical Society, Series B, 64, 141–157.

Hall, P. and Ooi, H. (2004). Attributing a probability to the shape of a probability density. The Annals of Statistics, 32, 2098–2123.

Hall, P. and York, M. On the calibration of Silverman’s test for multimodality. Statistica Sinica, 11, 515–536.

Hancock, G. R. and Klockars, A. J. (1996). The quest for alpha: Developments in multiple comparison procedures in the quarter century since Games (1971). Review of Educational Research, 66, 269–306.

Hardle, W. (1990). Applied Nonparametric Regression. Cambridge University Press, Cambridge.

Hartigan, J. A. and Hartigan, P. M. (1985). The DIP test of unimodality. The Annals of Statistics, 13, 70–84.

Heller, G. and Venkatraman, E. S. (1996). Resampling procedures to compare two survival distributions in the presence of right-censored data. Biometrics, 52, 1204–1213.

Hettmansperger, T. P. (1984). Statistical Inference Based on Ranks. John Wiley, New York.

Ho, Y. H. S. and Lee, S. M. S. (2005a). Calibrated interpolated confidence intervals for population quantiles. Biometrika, 92, 234–241.

Ho, Y. H. S. and Lee, S. M. S. (2005b). Iterated smoothed bootstrap confidence intervals for population quantiles. The Annals of Statistics, 33, 437–462.

Hochberg, Y. and Tamhane, A. C. (1987). Multiple Comparison Procedures. John Wiley and Sons, New York.

Hodges, J. A. (1931). The effect of rainfall and temperature on corn yields in Kansas. Journal of Farm Economics, 13, 305–318.

Hollander, M. and Wolfe, D. A. (1999). Nonparametric Statistical Methods. Second Edition. John Wiley and Sons, New York.

Holling, C. S. (1992). Cross-scale morphology, geometry, and dynamics of ecosystems. Ecological Monographs, 62, 447–502.


J

 

Jackson, D. A. (1993). Stopping rules in principal component analysis: a comparison of heuristical and statistical approaches. Ecology, 74, 2204– 2214.

Jackson, D. A. (1995). Bootstrapped principal components - reply to Mehlman et. al. Ecology, 76, 644–645.

James, L. F. (1997). A study of a class of weighted bootstraps for censored data. The Annals of Statistics, 25, 1595–1621.

Jennrich, R. I. (1969). Asymptotic properties of non-linear least squares estimators. The Annals of Mathematical Statistics, 40, 633–643.

Johnson, R. A. and Wichern, D. W. (1998). Applied Multivariate Statistical Analysis. Fourth Edition. Prentice Hall, New Jersey.

Jolicoeur, P., and Mosimann, J. E. (1960). Size and shape variation in the painted turtle: a principal component analysis. Growth, 24, 339–354.

Jones, M. C. and Sheather, S. J. (1991). Using non-stochastic terms to advantage in kernel-based estimation of integrated squared density derivatives. Statistics and Probability Letters, 11, 511–514.

Jψrgensen, S. (1985). Tree Felling With Original Neolithic Flint Axes in Draved Wood. National Museum of Denmark, Copenhagen.


K

 

Kane, V. E. (1986). Process capability indices. Journal of Quality Technology, 18, 41–52.

Kaplan, E. L., and Meier, P. (1958). Nonparametric estimation from incomplete observations. Journal of the American Statistical Association, 53, 457–481.

Konakov, V., and Mammen, E. (1998). The shape of kernel density estimates in higher dimensions. Mathematical Methods of Statistics, 6, 440–464.

Kotz, S. and Johnson, N. L. (1993). Process Capability Indices. Chapman and Hall, New York.

Kushler, R. and Hurley, P. (1992). Confidence bounds for capability indices. Journal of Quality Technology, 24, 188–195.


L

 

Le Cam, L. (1973). Convergence of estimates under dimensionality restrictions. The Annals of Statistics, 1, 38–53.

Le Cam, L. (1986). Asymptotic Methods in Statistical Decision Theory. Springer, Berlin.

Lehmann, E. L. (1999). Elements of Large Sample Theory. Springer, New York.

Lehmann, E. L. (2006). Statistical Methods Based on Ranks. Springer, New York.


M

 

Mallows, C. L. (1973). Some comments on Cp. Technometrics, 15, 661–675.

Mammen E. (1995). On qualitative smoothness of kernel density estimators. Statistics, 26, 253–267.

Mammen, E., Marron, J. S., and Fisher, N. I. (1992). Some asymptotics of multimodality tests based on kernel density estimators. Probability Theory and Related Fields, 91, 115–132.

Manly, B. F. J. (1996). Are there bumps in body-size distributions? Ecology, 77, 81–86.

Mann, H. B.and Whitney, D. R. (1947). On a test of whether one of two random variables is stochastically larger than the other. Annals of Mathematical Statistics, 18, 50–60.

Maritz, J. S. and Jarrett, R. G. (1978). A note on estimating the variance of the sample median. Journal of the American Statistical Association, 73, 194–196

Marron, J. S. (1993). Discussion of: “Practical performance of several data driven bandwidth selectors” by Park and Trulach. Computational Statistics, 8, 17–19.

Marron, J. S., and Wand, M. P. (1992). Exact mean integrated squared error. The Annals of Statistics, 20, 712–736.

Mathieu, J. R. and Meyer, D. A. (1997). Comparing axes heads of stone, bronze and steel: Studies in experimental archaeology. Journal of Field Archaeology, 24, 333–351.

McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models. Second Edition. Chapman and Hall, London.

McMurry, T. and Politis, D. N. (2004). Nonparametric regression with infinite order flat-top kernels. Journal of Nonparametric Statistics, 16, 549–562.

Mehlman, D. W., Shepherd, U. L., and Kelt, D. A. (1995). Bootstrapping principal components-a comment. Ecology, 76, 640–643.

Milan L., and Whittaker, J. (1995). Application of the parametric bootstrap to models that incorporate a singular value decomposition. Applied Statistics, 44, 31–49.

Miller, R. G. (1981). Simultaneous Statistical Inference. Second Edition. Springer-Verlag, New York. 

Miwa, T. (1997). Controversy over multiple comparisons in agronomic research. Japanese Journal of Applied Statistics, 26, 99–109. 

Montgomery, D. C. (1997). Design and Analysis of Experiments. Fourth Edition. John Wiley and Sons, New York. 

Morrison, D. F. (1990). Multivariate Statistical Methods. McGraw Hill, New York. 

Muenchow, G. (1986). Ecological use of failure time analysis. Ecology, 67, 246–250. 

Muller, H. G. (1988). Nonparametric Regression Analysis of Longitudinal Data. Springer-Verlag, New York. 

Muller, D. W. and Sawitzki, G. (1991). Excess mass estimates and tests for multimodality. Journal of the American Statistical Association, 86, 738– 746. 

Muller, H. G. Stadtmuller, U. (1987). Estimation of heteroscedaticity in regression analysis. The Annals of Statistics, 15, 610–635. 

Muller, H. G. Stadtmuller, U. (1988). Detecting dependencies in smooth regression models. Biometrika, 75, 639–650. 


N

 

Nadaraya, E. A. (1964). On estimating regression. Theory and Probability and its Applications, 10, 186–190. 

Nelder, J. A. and Wedderburn, R. W. M. (1972). Generalized linear models. Journal of the Royal Statistical Society, Series A, 135, 370–384. 


O

 

O’Keefe, D. J. (2003). Colloquy: Should familywise alpha be adjusted? Against familywise alpha adjustment. Human Communication Research, 29, 431– 447. 


P

 

Park, B. U. and Marron, J. S. (1990). Comparison of data-driven bandwidth selectors. Journal of the American Statistical Association, 85, 66–72. 

Parzen, E. (1962). On the estimation of a probability density function and the mode. The Annals of Mathematical Statistics, 33, 1065–1076. 

Pearson G. W., and Qua, F. (1993). High precision 14C measurement of Irish oaks to show the natural 14C variations from AD 1840-5000 BC: A correction. Radiocarbon, 35, 105–123. 

Polansky, A. M. (2000). Stabilizing bootstrap-t confidence intervals for small samples. Canadian Journal of Statistics, 28, 501–516. 

Polansky, A. M. (2003a). Supplier selection based on bootstrap confidence regions of process capability indices. International Journal of Reliability, Quality and Safety Engineering, 10, 1–14. 

Polansky, A. M. (2003b). Selecting the best treatment in designed experiments. Statistics in Medicine, 22, 3461–3471.

Polansky, A. M., and Kirmani, S. N. U. A. (2003). Quantifying the capability of industrial processes. In Handbook of Statistics, Volume 22. Edited by B. Khattree and C. R. Rao, Elsevier Science, Amsterdam, The Netherlands. 625–656. 

Poliak, C. D. (2007). Observed Confidence Levels for Regression Models. Ph. D. Dissertation, Division of Statistics, Northern Illinois University

Pollard, D. (2002). A User’s Guide to Measure Theoretic Probability. Cambridge University Press. 

Polonik, W. (1995). Measuring mass concentrations and estimating density contour clusters-an excess mass approach. The Annals of Statistics, 23, 855–881. 

Potthoff, R. F. and Roy, S. N. (1964). A generalized multivariate analysis of variance model useful especially for growth curve problems. Biometrika, 51, 313–326. 

Putter, H. and van Zwet, W. R. (1996). Resampling: consistency of substitution estimators. The Annals of Statistics, 24, 2297–2318.


R

 

Randles, R. H. and Wolfe, D. A. (1979). Introduction to the Theory of Nonparametric Statistics. John Wiley and Sons, New York. 

Reid, N. (1981). Estimating the median survival time. Biometrika, 68, 601– 608. 

Rice, J. (1984). Bandwidth choice for nonparametric regression. The Annals of Statistics, 12, 1215–1230. 

Rosenblatt, M. (1956). Remarks on some nonparametric estimates of a density function. The Annals of Mathematical Statistics, 27, 832–837. 

Rudemo, M. (1982). Empirical choice of histograms and kernel density estimators. Scandinavian Journal of Statistics, 9, 65–78. 

Ruppert, D., Sheather, S. J. and Wand, M. P. (1995). An effective bandwidth selector for local least squares regression. Journal of the American Statistical Association, 90, 1257–1270. 

Ruppert, D. and Wand, M. P. (1994). Multivariate locally weighted least squares regression. Annals of Statistics, 22, 1346–1370. 


S

 

Saville, D. J. (1990). Multiple comparison procedures: The practical solution. The American Statistician, 44. 174–180. 

Schenker, N. (1985). Qualms about bootstrap confidence intervals. Journal of the American Statistical Association, 80, 360–361. 

Scott, D. W. (1992). Multivariate Density Estimation. John Wiley and Sons, New York. 

Scott, D. W. and Terrell, G. R. (1987). Biased and unbiased cross-validation in density estimation. Journal of the American Statistical Association, 82, 1131–1146.

Seifert, B., Gasser, T. and Wolfe, A. (1993). Nonparametric estimation of residual variance revisited. Biometrika, 80, 373–383. 

Sen, P. K. and Singer, J. M. (1993). Large Sample Theory in Statistics. Chapman and Hall, London. 

Serfling, R. L. (1980). Approximation Theorems of Mathematical Statistics. John Wiley and Sons, New York. 

Shao, J. and Tu, D. (1995). The Jackknife and Bootstrap. Springer, New York. 

Sheather, S. J. and Jones, M. C. (1991). A reliable data-based bandwidth selection method for kernel density estimation. Journal of the Royal Statistical Society, Series B, 53, 683–690. 

Shoemaker, O. J. and Pathak, P. K. (2001). The sequential bootstrap: A comparison with regular bootstrap. Communications in Statistics: Theory and Methods, 30, 1661–1674. 

Silverman, B. W. (1981). Using kernel density estimates to investigate multimodality. Journal of the Royal Statistical Society, Series B, 43, 97–99. 

Silverman, B. W. (I983). Some properties of a test for multimodality based on kernel density estimates. In Probability, Statistics and Analysis. Edited by J. F. C. Kingman, and G. E. H. Reuter. Cambridge, UK, Cambridge University Press. 248–259. 

Silverman, B. W. (1986). Density Estimation for Statistics and Data Analysis. Chapman and Hall, London. 

Simonoff, J. S. Smoothing Methods in Statistics. Springer, New York. 

Snow, T. P. (1987). The Dynamic Universe, Second Edition.West Publishing Company, St. Paul, MN. 

Stauffer, D. F., Garton, E. O., and Steinhorst, R. K. (1985). A comparison of principal components from real and random data. Ecology, 66, 1693–1698. 

Stefansson, G., Kim, W.-C., and Hsu, J. C. (1988). On confidence sets in multiple comparisons. In Statistical Decision Theory and Related Topics IV. Edited by S.S. Gupta and J. O. Berger. New York, Academic Press. 2, 18–104. 

Strawderman, R. L. and Wells, M. T. (1997). Accurate bootstrap confidence limits for the cumulative hazard and survivor functions under random censoring. Journal of the American Statistical Association, 92, 1356–1374. 

Stuiver, M., Reimer, P. J. and Braziunas, T. F. (1998). High-precision radiocarbon age calibration for terrestrial and marine samples. Radiocarbon, 40, 1127–1151. 


T

 

Thomas, H. V. and Simmons, E. (1969). Histamine content in sputum from allergic and nonallergic individuals. Journal of Applied Physiology, 26, 793- 797. 

Thompson J. R. and Tapia R. A. (1990). Nonparametric Function Estimation, Modeling, and Simulation. SIAM, Phildelphia, PA.

Tibshirani, R. (1989). Noninformative priors for one parameter of many. Biometrika, 76, 604–608. 


W

 

Wand, M. P. and Jones, M. C. (1993). Comparison of smoothing parameterizations in bivariate kernel density estimation. Journal of the American Statistical Association, 88, 529–528. 

Wand, M. P. and Jones, M. C. (1995). Kernel Smoothing. Chapman and Hall, London. 

Watson, G. S. (1964). Smooth regression analysis. Sankhya Series A, 26, 101–116. 

Welch, B. L. and Peers, H. W. (1963). On formulae for confidence points based on integrals of weighted likelihoods. Journal of the Royal Statistical Society - Series B, 25, 318–329. 

Westfall, P. H. and Young, S. S. (1993). Resampling-Based Multiple Testing. John Wiley and Sons, New York. 

Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics, 1, 80–83. 

Winterbottom, A. (1979). A note on the derivation of Fisher’s transformation of the correlation coefficient. The American Statistician, 33, 142–143. 

Withers, C. S. (1983). Expansions for the distributions and quantiles of a regular functional of the empirical distribution with applications to nonparametric confidence intervals. The Annals of Statistics, 11, 577–587.

Woolson, R. F. (1987). Statistical Methods for the Analysis of Biomedical Data. John Wiley and Sons, New York.

Wu, C. F. J. (1986). Jackknife, bootstrap and other resampling methods in regression analysis. The Annals of Statistics, 14, 1261–1295.


Z

 

Zellner, A. (1962). An efficient method for estimating seemingly unrelated regressions and tests for aggregation bias. Journal of the American Statistical Association, 57, 348–368.

Zucconi, F., Pera, A., Forte, M., and De Bertoldi, M. (1981). Evaluating toxicity of immature compost. Biocycle, 22, 54–57.


Home Ordering the Book News References R Code Data Corrections About the Author