Please note that access to the copyrighted material linked on this page may require a subscription from your
institution.
Most of the articles require JSTOR access.
In most cases you will be able to access a abstract, and in many cases the article of interest may be available for purchase from the publisher.

Jump to A B C D E Efron F G H Hall I J K L M N O P R S T W Z

Adkins, L. C. and
Hill, R. C.
(1990).
An improved confidence ellipsoid for linear regression models.
*Journal of Statistical Computation and Simulation*,
**36**,
9-18.

Agresti, A. and
Coull, B. A.
(1998).
Approximate is better than ``exact" for interval estimation of binomial proportions.
*The American Statistician*,
**52**,
119-126.

Ahrens, L. H.
(1965).
Observations on the Fe-Si-Mg relationship in chondrites.
*Geochimica et Cosmochimica Acta*,
**29**, 801-806.

Akritas, M. G.
(1986).
Bootstrapping the Kaplan-Meier estimator.
*Journal of the American Statistical Association*, **81**, 1032-1038.

Apostol, T. M.
(1967).
*Calculus: Volume I.*
John Wiley and Sons,
New York.

Azzalini, A. and
Bowman, A. W.
(1990).
A look at some data on the Old Faithful geyser.
*Applied Statistics*,
**39**, 357-365.

Barber, S. and
Jennison, C.
(1999).
Symmetric tests and confidence intervals for survival probabilities and quantiles of censored survival data.
*Biometrics*,
**55**, 430-436.

Barndorff-Nielsen, O. E. and
Cox, D. R.
(1989).
*
Asymptotic Techniques for Use in Statistics.*
London.

Bhattacharya, R. N. and
Ghosh, J. K.
(1978).
On the validity of the formal Edgeworth expansion.
*The Annals of Statistics*, **6**, 435-451.

Billingsley, P. (1999). *Convergence of Probability Measures*.
John Wiley and
Sons, New York.

Booth, J. G. and Sarkar, S. (1998).
Monte Carlo approximation of bootstrap variances.
*The American Statistician*, **52**, 354-357.

Bowman, A. W. (1984).
An alternative method of cross-validation for the smoothing of density estimates.
*Biometrika*, **71**, 353-360.

Bowman, A. W. and
Azzalini, A. (1997).
*Applied Smoothing Techniques for Data
Analysis.
*
Oxford Press,
Oxford.

Boyce, M. S. (1987).
Time-series analysis and forecasting of the Aransas/Wood Buffalo Whooping Crane population.
*Proceedings of the 1985 Crane Workshop*.
J. C. Lewis, Editor.
Platte River Whooping Crane Habitat Maintenance Trust,
Grand Island,
Nebraska,
U. S. A., 1-9.

Braun, J. and Hall, P. (2001).
Data sharpening for nonparametric inference subject to constraints.
*Journal of Computational and Graphical Statistics*, **10**, 786-806.

Brown, L. D., Cai, T. T., and DasGupta, A. (2003).
Interval estimation in exponential families.
*Statistica Sinica*,
**13**, 19-49.

Casella, G. and Berger, R.
L. (2002).
* Statistical Inference*, Second Edition.
Duxbury,
Pacific Grove,
California.

Cheng, M.-Y. and Hall P. (1998).
Calibrating the excess mass and dip tests
of modality.
* Journal of the Royal Statistical Society*, Series
B, **60**,
579-589.

Cheung, K. Y. and Lee, S. M. S. (2005).
Variance estimation for sample quantiles using the
* m* out of * n* bootstrap.
* Annals of the Institute of Statistical
Mathematics*, **57**, 279-290.

Chikae, M., Kagan, K., Nagatani, N., Takamura, Y. and Tamiya, E. (2007).
An electrochemical on-field sensor system for the detection of compost maturity.
* Analytica Chimica Acta*, **581**, 364-369.

Choi, E. and
Hall, P. (1999).
Data sharpening as a prelude to density estimation.
* Biometrika*,
**86**, 941-947.

Chou, Y.-M. (1994).
Selecting a better supplier by testing process capability indices.
*Quality Engineering*, **18**, 41-52.

Chou, Y.-M., Owen, D. B. and Borrego, A. S. A. (1990).
Lower confidence limits on process capability indices.
*Journal of Quality Technology*, **22**, 239-229.

Chu, C.-K. and Marron, J. S. (1991).
Choosing a kernel regression estimator. *
Statistical Science*, **6**, 404-436.

Conover, W. J. (1980). *
Practical Nonparametric Statistics*.
John Wiley and Sons, New York.

Cox, D. R. (1966).
Notes on the analysis of mixed frequency distributions. *
British Journal of Mathematical and Statistical Psychology*, **19**, 39-47.

Cramer. H. (1946). *
Mathematical Methods of Statistics*. Princeton University Press, Princeton.

Curran-Everett, D. (2000).
Multiple comparisons: philosophies and illustrations. *
American Journal of Physiology - Regulatory, Integrative and Comparative
Physiology*, **279**, R1-R8.

Dalgaard, P.
(2002).
*Introductory Statistics with R*.
Springer, New York.

Davis, C. S. (2002).
*Statistical Methods for the Analysis of Repeated Measures.*
Springer, New York.

Davison, A. C. & Hinkley, D. V. (1997). *Bootstrap Methods and their
Application*. Cambridge, UK: Cambridge University Press.

Dennis, B., Munholland, P. L. and Scott, J. M. (1991). Estimation of growth and
extinction parameters for endangered species. *Ecological Monographs*,**
61**, 115143.

Dette, H., Munk, A. and Wagner, T. (1998). Estimating the variance in
nonparametric regression-what is a reasonable choice? *Journal of the Royal
Statistical Society, Series B*, **60**, 751764.

Devore, J. L. (2006). *Probability and Statistics for Scientists and Engineers*.
Sixth Edition. Thomson, Belmont, CA.

Diaconis, P. and Efron, B. (1983). Computer intensive methods in statistics. *Scientific
American*, **248**, 96108.

Donoho, D. L. (1988). One-sided inference about functionals of a density. *The
Annals of Statistics*, **16**, 13901420.

Efron, B. (1979). The bootstrap: Another look at the
jackknife. *The Annals of Statistics*, **7**, 126.

Efron, B. (1981a). Nonparametric standard errors and confidence intervals, (with
discussion). *Canadian Journal of Statistics*, **9**, 139172.

Efron, B. (1981b). Censored data and the bootstrap. *Journal of the American
Statistical Association*, **76**, 312319.

Efron, B. (1987). Better bootstrap confidence intervals. *Journal of the
American Statistical Association*, **82**, 171200.

Efron, B. and Feldman, D. (1991). Compliance as an explanatory variable in
clinical trials. *Journal of the American Statistical Association*, **86**,
926.

Efron, B. and Gong, G. (1983). A leisurely look at the bootstrap, the jackknife,
and cross validation. *The American Statistician*, **37**, 3648.

Efron, B., Holloran, E., and Holmes, S. (1996). Bootstrap confidence levels for
phylogenetic trees. *Proceedings of the National Academy of Sciences of the
United States of America*, **93**, 1349213434.

Efron, B. and Tibshirani, R. J. (1986). Bootstrap methods for standard errors,
confidence intervals, and other measures of statistical accuracy. *Statistical
Science*, **1**, 5457.

Efron, B. and Tibshirani, R. J. (1993). *An Introduction to the Bootstrap*.
Chapman and Hall, New York.

Efron, B. and Tibshirani, R. J. (1996). The problem of regions. Stanford Technical Report 192.

Efron, B. and Tibshirani, R. J. (1998). The problem of regions. *The Annals of
Statistics*, **26**, 16871718.

Eicker, F. (1963). Asymptotic normality and consistency of the least squares
estimators for families of linear regressions. *The Annals of Mathematical
Statistics*, **34**, 447456.

Epanechnikov, V. A. (1969) Non-parametric estimation of a multivariate
probability density. *Theory of Probability and its Applications*, **14**,
153 158.

Ernst, M. D. and Hutson, A. D. (2003). Utilizing a quantile function approach to
obtain exact bootstrap solutions. *Statistical Science*, **18**, 231240.

Falk, M. and Kaufman, E. (1991). Coverage probabilities of bootstrap confidence
intervals for quantiles. *The Annals of Statistics*, **19**, 485495.

Falk, M. and Reiss, R.-D. (1989). Weak convergence of smoothed and nonsmoothed
bootstrap quantile estimates. *The Annals of Probability*, **17**, 362
371.

Feigl, P. and Zelen, M. (1965). Estimation of exponential survival probabilities
with concomitant information. *Biometrics*, **21**, 826838.

Felsenstein, J. (1985). Confidence limits on phylogenies: An approach using the
bootstrap. *Evolution*, 783791.

Ferguson, T. S. (1996) *A Course in Large Sample Theory*. Chapman and Hall,
London.

Finner, H. and Strassburger, K. (2002). The partitioning principle. *The
Annals of Statistics*, **30**, 11941213.

Fischer, M. P. and Polansky, A. M. (2006). Influence of flaws on joint spacing
and saturation: Results of one-dimensional mechanical modeling. *Journal of
Geophysical Research*, **111**, B07403, doi:10.1029/2005JB004115.

Fisher, R. A. (1915). Frequency distribution of the values of the correlation
coefficient in samples from an indefinitely large population. *Biometrika*,
**10**, 507521.

Fisher, N. I. and Marron, J. S. (2001). Mode testing via the excess mass
estimate. *Biometrika*, **88**, 499517.

Fix, E. and Hodges, J. L. (1951). Discriminatory analysis-nonparametric discrimination: Consistency properties. Report No. 4, Project No. 21-29-004, USAF School of Aviation Medicine, Randolph Field, Texas.

Fix, E. and Hodges, J. L. (1989). Discriminatory analysis-nonparametric
discrimination: Consistency properties. *International Statistical Review*,
**57**, 238247.

Flury, B. and Riedwyl, H. (1988). *Multivariate Statistics: A Practical
Approach*. Chapman and Hall, London.

Flynn, M. R. (2004). The beta distribution-a physically consistent model for
human exposure to airborne contaminants. *Stochastic Environmental Research
and Risk Assessment*, **18**, 306308.

Frangos, C. C., and Schucany, W. R. (1990). Jackknife estimation of the
bootstrap acceleration constant. *Computational Statistics and Data Analysis*,
**9**, 271281.

Franklin, L. A. and Wasserman, G. S. (1991). Bootstrap confidence interval
estimates of C_{pk}: An introduction. *Communications in
Statistics-Simulation and Computation*, **20**, 231242.

Franklin, L. A. and Wasserman, G. S. (1992a). A note on the conservative nature
of the tables of lower confidence limits for C_{pk} with a suggested
correction. *Communications in Statistics-Simulation and Computation*, **21**,
11651169.

Franklin, L. A. and Wasserman, G. S. (1992b). Bootstrap lower confidence limits
for capability indices. *Journal of Quality Technology*, **24**, 196209.

Freedman, D. A. (1981). Bootstrapping regression models. *The Annals of
Statistics*, **9**, 12181228.

Freedman, D. A. and Peters, S. C. (1984). Bootstrapping a regression equation:
Some empirical results. *Journal of the American Statistical Association*, **79**,
97106.

Games, P. A. (1971). Multiple comparisons of means. *American Educational
Research Journal*, **8**, 531565.

Garwood, F. (1936). Fiducial limits for the Poisson distribution. *Biometrika*,
**28**, 437442.

Gasser, T., Sroka, L. and Jennen-Steinmetz, C. (1986). Residual variance and
residual pattern in nonlinear regression. *Biometrika*, **73**, 625633.

Gelman, A. B., Carlin, J. S., Stern, H. S., and Rubin, D. B. (1995). *Bayesian
Data Analysis*. Chapman and Hall, London.

Gibbons, J. D. and Chakraborti, S. (2003). *Nonparametric Statistical
Inference*. Marcel Dekker, New
York.

Good, I. J and Gaskins, R. A. (1980). Density estimation and bump-hunting by the
penalized likelihood method exemplified by scattering and meteorite data. *Journal
of the American Statistical Association*, **75**, 4256.

Hajek, J. (1969). *Nonparametric Statistics*. Holden-Day, San Francisco.

Hajek, J. and Sidak, Z. (1967). *Theory of Rank Tests*. Academic Press,
New York.

Hall, P. (1986). On the number of bootstrap simulations
required to construct a confidence interval. *The
Annals of Statistics*, **14**,
14531462.

Hall, P. (1988). Theoretical comparison of bootstrap confidence intervals. *The
Annals of Statistics*, **16**, 927985.

Hall, P. (1989). Unusual properties of bootstrap confidence intervals in
regression problems. *Probability Theory and Related Fields*, **81**,
247273.

Hall, P. (1992a). *The Bootstrap and Edgeworth Expansion*. Springer, New
York.

Hall, P. (1992b). On bootstrap confidence intervals in nonparametric regression.
*The Annals of Statistics*, **20**, 695711.

Hall, P., DiCiccio, T. J., and Romano, J. P. (1989). On smoothing and the
bootstrap. *The Annals of Statistics*, **17**, 692704.

Hall, P. and Kang, K.-H. (2005). Unimodal kernel density estimation by data
sharpening. *Statistica Sinica*, **15**, 7398.

Hall, P., Kay, J. W. and Titterington, D. M. (1990). Asymptotically optimal
difference-based estimation of variance in nonparametric regression. *Biometrika*,
**77**, 521528.

Hall, P. and Marron, J. S. (1987a). Extent to which least-squares
crossvalidation minimizes integrated squared error in non-parametric density
estimation. *Probability Theory and Related Fields*, **74**, 568581.

Hall, P. and Marron, J. S. (1987b). Estimation of integrated squared density
derivatives. *Statistics and Probability Letters*, **6**, 109115.

Hall, P. and Marron, J. S. (1991). Local minima in cross-validation functions. *Journal
of the Royal Statistical Society-Series B*, **53**, 245252.

Hall, P. and Martin, M. A. (1987). Exact convergence rate of bootstrap quantile
variance estimator. *Probability Theory and Related Fields*, **80**, 261
268.

Hall, P. and Martin, M. A. (1988). On bootstrap resampling and iteration. *Biometrika*,
**75**, 661671.

Hall, P. and Martin, M. A. (1989). A note on the accuracy of bootstrap
percentile method confidence intervals for a quantile. *Statistics and
Probability Letters*, **8**, 197200.

Hall, P. and Minnotte, M. C. (2002). High order data sharpening for density
estimation. *Journal of the Royal Statistical Society, Series B*, **64**,
141157.

Hall, P. and Ooi, H. (2004). Attributing a probability to the shape of a
probability density. *The Annals of Statistics*, **32**, 20982123.

Hall, P. and York, M. On the calibration of Silvermans test for multimodality.
*Statistica Sinica*, **11,** 515536.

Hancock, G. R. and Klockars, A. J. (1996). The quest for alpha: Developments in
multiple comparison procedures in the quarter century since Games (1971). *Review
of Educational Research*, **66**, 269306.

Hardle, W. (1990). *Applied Nonparametric Regression*. Cambridge University
Press, Cambridge.

Hartigan, J. A. and Hartigan, P. M. (1985). The DIP test of unimodality. *The
Annals of Statistics*, **13**, 7084.

Heller, G. and Venkatraman, E. S. (1996). Resampling procedures to compare two
survival distributions in the presence of right-censored data. *Biometrics*,
**52**, 12041213.

Hettmansperger, T. P. (1984). *Statistical Inference Based on Ranks*. John
Wiley, New York.

Ho, Y. H. S. and Lee, S. M. S. (2005a). Calibrated interpolated confidence
intervals for population quantiles. * Biometrika*, **92**, 234241.

Ho, Y. H. S. and Lee, S. M. S. (2005b). Iterated smoothed bootstrap confidence
intervals for population quantiles. * The Annals of
Statistics*, 33, 437462.

Hochberg, Y. and Tamhane, A. C. (1987). * Multiple Comparison Procedures*. John
Wiley and Sons, New York.

Hodges, J. A. (1931). The effect of rainfall and temperature on corn yields in
Kansas. * Journal of Farm Economics*, **13**, 305318.

Hollander, M. and Wolfe, D. A. (1999). * Nonparametric Statistical Methods*. Second
Edition. John Wiley and Sons, New York.

Holling, C. S. (1992). Cross-scale morphology, geometry, and dynamics of
ecosystems. * Ecological Monographs*, **62**, 447502.

Jackson, D. A. (1993). Stopping rules in principal component analysis: a
comparison of heuristical and statistical approaches. *Ecology*, **74**, 2204 2214.

Jackson, D. A. (1995). Bootstrapped principal components - reply to Mehlman et.
al. *Ecology*, **76**, 644645.

James, L. F. (1997). A study of a class of weighted bootstraps for censored
data. * The Annals of Statistics*, 25, 15951621.

Jennrich, R. I. (1969). Asymptotic properties of non-linear least squares
estimators. * The Annals of Mathematical
Statistics*, 40, 633643.

Johnson, R. A. and Wichern, D. W. (1998). * Applied Multivariate Statistical
Analysis*. Fourth Edition. Prentice Hall, New Jersey.

Jolicoeur, P., and Mosimann, J. E. (1960). Size and shape variation in the
painted turtle: a principal component analysis. *Growth*, **24**, 339354.

Jones, M. C. and Sheather, S. J. (1991). Using non-stochastic terms to advantage
in kernel-based estimation of integrated squared density derivatives. * Statistics
and Probability Letters*, **11**, 511514.

Jψrgensen, S. (1985). * Tree Felling With Original Neolithic Flint Axes in Draved
Wood*. National Museum of Denmark, Copenhagen.

Kane, V. E. (1986). Process capability indices. * Journal of Quality
Technology*, **18**, 4152.

Kaplan, E. L., and Meier, P. (1958). Nonparametric estimation from incomplete
observations. * Journal of the American Statistical
Association*, **53**, 457481.

Konakov, V., and Mammen, E. (1998). The shape of kernel density estimates in
higher dimensions. * Mathematical Methods of Statistics*, **6**, 440464.

Kotz, S. and Johnson, N. L. (1993). * Process Capability Indices*. Chapman and
Hall, New York.

Kushler, R. and Hurley, P. (1992). Confidence bounds for capability indices. *
Journal of Quality Technology*, **24**, 188195.

Le Cam, L. (1973). Convergence of estimates under dimensionality
restrictions. * The Annals of Statistics*, 1, 3853.

Le Cam, L. (1986). * Asymptotic Methods in Statistical Decision Theory*.
Springer, Berlin.

Lehmann, E. L. (1999). * Elements of Large Sample Theory*. Springer, New York.

Lehmann, E. L. (2006). * Statistical Methods Based on Ranks*. Springer, New
York.

Mallows, C. L. (1973). Some comments on Cp. *Technometrics*, **15**, 661675.

Mammen E. (1995). On qualitative smoothness of kernel density estimators. *Statistics*,
**26**, 253267.

Mammen, E., Marron, J.
S., and Fisher, N. I. (1992). Some asymptotics of
multimodality tests based on kernel density estimators. * Probability Theory and
Related Fields*, **91**, 115132.

Manly, B. F. J. (1996). Are there bumps in body-size distributions? *Ecology*,
**77**, 8186.

Mann, H. B.and Whitney, D. R. (1947). On a test of whether one of two random
variables is stochastically larger than the other. * Annals of Mathematical
Statistics*, 18, 5060.

Maritz, J. S. and Jarrett, R. G. (1978). A note on estimating the variance of
the sample median. * Journal of the American Statistical
Association*, **73**, 194196

Marron, J. S. (1993). Discussion of: Practical performance of several data
driven bandwidth selectors by Park and Trulach. * Computational Statistics*,
**8**,
1719.

Marron, J. S., and Wand, M. P. (1992). Exact mean integrated squared error. *
The Annals of Statistics*, 20, 712736.

Mathieu, J. R. and Meyer, D. A. (1997). Comparing axes heads of stone, bronze
and steel: Studies in experimental archaeology. * Journal of Field Archaeology*,
**24**, 333351.

McCullagh, P. and Nelder, J. A. (1989). * Generalized Linear Models*. Second
Edition. Chapman and Hall, London.

McMurry, T. and Politis, D. N. (2004). Nonparametric regression with infinite
order flat-top kernels. * Journal of Nonparametric Statistics*, **16**, 549562.

Mehlman, D. W., Shepherd, U. L., and Kelt, D. A. (1995). Bootstrapping
principal components-a comment. *Ecology*, **76**, 640643.

Milan L., and Whittaker, J. (1995). Application of the parametric bootstrap
to models that incorporate a singular value decomposition. * Applied
Statistics*, **44**, 3149.

Miller, R. G. (1981). * Simultaneous Statistical Inference*. Second Edition.
Springer-Verlag, New York.

Miwa, T. (1997). Controversy over multiple comparisons in agronomic research.
*
Japanese Journal of Applied Statistics*, **26**, 99109.

Montgomery, D. C. (1997). * Design and Analysis of Experiments*. Fourth Edition.
John Wiley and Sons, New York.

Morrison, D. F. (1990). Multivariate Statistical Methods. McGraw Hill, New York.

Muenchow, G. (1986). Ecological use of failure time analysis. *Ecology*,
**67**,
246250.

Muller, H. G. (1988). * Nonparametric Regression Analysis of Longitudinal
Data*.
Springer-Verlag, New York.

Muller, D. W. and Sawitzki, G. (1991). Excess mass estimates and tests for
multimodality. * Journal of the American Statistical
Association*, **86**, 738
746.

Muller, H. G. Stadtmuller, U. (1987). Estimation of heteroscedaticity in
regression analysis. The *Annals of
Statistics*, **15**, 610635.

Muller, H. G. Stadtmuller, U. (1988). Detecting dependencies in smooth
regression models. *Biometrika*, **75**, 639650.

Nadaraya, E. A. (1964). On estimating regression. *Theory and Probability
and its Applications*, 10, 186190.

Nelder, J. A. and Wedderburn, R. W. M. (1972). Generalized linear models. *Journal
of the Royal Statistical Society*, Series A, **135**, 370384.

OKeefe, D. J. (2003). Colloquy: Should familywise alpha be adjusted?
Against familywise alpha adjustment. *Human Communication Research*, **29**,
431 447.

Park, B. U. and Marron, J. S.
(1990). Comparison of data-driven bandwidth
selectors. *Journal of the American Statistical Association*,
**85**, 6672.

Parzen, E. (1962). On the estimation of a probability density function and
the mode. *The Annals of Mathematical Statistics*, **33**, 10651076.

Pearson G. W., and Qua, F. (1993). High precision 14C measurement of Irish
oaks to show the natural 14C variations from AD 1840-5000 BC: A correction. *Radiocarbon*,
**35**, 105123.

Polansky, A. M. (2000). Stabilizing bootstrap-t confidence intervals for
small samples. *Canadian Journal of Statistics*, **28**, 501516.

Polansky, A. M. (2003a). Supplier selection based on bootstrap confidence
regions of process capability indices. *International Journal of Reliability,
Quality and Safety Engineering*, **10**, 114.

Polansky, A. M. (2003b). Selecting the best treatment in designed
experiments. *Statistics in Medicine*, **22**, 34613471.

Polansky, A. M., and Kirmani, S. N. U. A. (2003). Quantifying the capability of industrial processes. In Handbook of Statistics, Volume 22. Edited by B. Khattree and C. R. Rao, Elsevier Science, Amsterdam, The Netherlands. 625656.

Poliak, C. D. (2007). *Observed Confidence Levels for Regression Models.*
Ph. D. Dissertation, Division of Statistics, Northern Illinois
University.

Pollard, D. (2002). * A Users Guide to Measure Theoretic Probability*.
Cambridge University Press.

Polonik, W. (1995). Measuring mass concentrations and estimating density
contour clusters-an excess mass approach. * The Annals of Statistics*, **23**, 855881.

Potthoff, R. F. and Roy, S. N. (1964). A generalized multivariate analysis of
variance model useful especially for growth curve problems. *Biometrika*, **51**, 313326.

Putter, H. and van Zwet, W. R. (1996). Resampling: consistency of
substitution estimators. * The Annals of Statistics*, **24**, 22972318.

Randles, R. H. and Wolfe, D. A. (1979). * Introduction to the Theory of
Nonparametric Statistics*. John Wiley and Sons, New York.

Reid, N. (1981). Estimating the median survival time. Biometrika, 68, 601 608.

Rice, J. (1984). Bandwidth choice for nonparametric regression. * The Annals
of Statistics*, **12**, 12151230.

Rosenblatt, M. (1956). Remarks on some nonparametric estimates of a density
function. * The Annals of Mathematical Statistics*, **27**, 832837.

Rudemo, M. (1982). Empirical choice of histograms and kernel density
estimators. * Scandinavian Journal of Statistics*, **9**, 6578.

Ruppert, D., Sheather, S. J. and Wand, M. P. (1995). An effective bandwidth
selector for local least squares regression. *Journal
of the American Statistical Association*, **90**, 12571270.

Ruppert, D. and Wand, M. P. (1994). Multivariate locally weighted least
squares regression. * Annals of Statistics*, **22**, 13461370.

Saville, D. J. (1990). Multiple comparison procedures: The practical
solution. * The American Statistician*,
**44**. 174180.

Schenker, N. (1985). Qualms about bootstrap confidence intervals. *Journal
of the American Statistical Association*, **80**, 360361.

Scott, D. W. (1992). * Multivariate Density Estimation*. John Wiley and Sons,
New York.

Scott, D. W. and Terrell, G. R. (1987). Biased and unbiased cross-validation
in density estimation. *Journal
of the American Statistical Association*, **82**, 11311146.

Seifert, B., Gasser, T. and Wolfe, A. (1993). Nonparametric estimation of
residual variance revisited. *Biometrika*, **80**, 373383.

Sen, P. K. and Singer, J. M. (1993). *Large Sample Theory in Statistics*.
Chapman and Hall, London.

Serfling, R. L. (1980). *Approximation Theorems of Mathematical Statistics*.
John Wiley and Sons, New York.

Shao, J. and Tu, D. (1995). *The Jackknife and Bootstrap*. Springer, New
York.

Sheather, S. J. and Jones, M. C. (1991). A reliable data-based bandwidth
selection method for kernel density estimation. *Journal
of the Royal Statistical Society*,
Series B, **53**, 683690.

Shoemaker, O. J. and Pathak, P. K. (2001). The sequential bootstrap: A
comparison with regular bootstrap. *Communications in Statistics: Theory and
Methods*, **30**, 16611674.

Silverman, B. W. (1981). Using kernel density estimates to investigate
multimodality. *Journal
of the Royal Statistical Society*,
Series B, **43**, 9799.

Silverman, B. W. (I983). Some properties of a test for multimodality based on kernel density estimates. In Probability, Statistics and Analysis. Edited by J. F. C. Kingman, and G. E. H. Reuter. Cambridge, UK, Cambridge University Press. 248259.

Silverman, B. W. (1986). *Density Estimation for Statistics and Data
Analysis*. Chapman and Hall, London.

Simonoff, J. S. *Smoothing Methods in Statistics*. Springer, New
York.

Snow, T. P. (1987). *The Dynamic Universe*, Second Edition.West
Publishing Company, St. Paul, MN.

Stauffer, D. F., Garton, E. O., and Steinhorst, R. K. (1985). A comparison of
principal components from real and random data. *Ecology*, **66**, 16931698.

Stefansson, G., Kim, W.-C., and Hsu, J. C. (1988). On confidence sets in
multiple comparisons. In *Statistical Decision Theory and Related Topics IV*.
Edited by S.S. Gupta and J. O. Berger. New York, Academic Press. 2, 18104.

Strawderman, R. L. and Wells, M. T. (1997). Accurate bootstrap confidence
limits for the cumulative hazard and survivor functions under random censoring. *Journal
of the American Statistical Association*, **92**, 13561374.

Stuiver, M., Reimer, P. J. and Braziunas, T. F. (1998). High-precision
radiocarbon age calibration for terrestrial and marine samples. *Radiocarbon*,
**40**, 11271151.

Thomas, H. V. and Simmons, E. (1969). Histamine content in sputum from
allergic and nonallergic individuals. *Journal of Applied Physiology*, **26**,
793- 797.

Thompson J. R. and Tapia R. A. (1990). *Nonparametric Function Estimation,
Modeling, and Simulation*. SIAM, Phildelphia, PA.

Tibshirani, R. (1989). Noninformative priors for one parameter of many. *Biometrika*,
**76**, 604608.

Wand, M. P. and Jones, M. C. (1993). Comparison of smoothing
parameterizations in bivariate kernel density estimation. *Journal
of the American Statistical Association*, **88**, 529528.

Wand, M. P. and Jones, M. C. (1995). *Kernel Smoothing*. Chapman and
Hall, London.

Watson, G. S. (1964). Smooth regression analysis. *Sankhya Series A*, **26**,
101116.

Welch, B. L. and Peers, H. W. (1963). On formulae for confidence points based
on integrals of weighted likelihoods. *Journal of the Royal Statistical
Society - Series B*, **25**, 318329.

Westfall, P. H. and Young, S. S. (1993). *Resampling-Based Multiple Testing*.
John Wiley and Sons, New York.

Wilcoxon, F. (1945). Individual comparisons by ranking methods. *Biometrics*,
**1**, 8083.

Winterbottom, A. (1979). A note on the derivation of Fishers
transformation of the correlation coefficient. *The American Statistician*,
**33**, 142143.

Withers, C. S. (1983). Expansions for the distributions and quantiles of a
regular functional of the empirical distribution with applications to
nonparametric confidence intervals. *The Annals of Statistics*, **11**,
577587.

Woolson, R. F.
(1987). *Statistical
Methods for the Analysis of Biomedical Data*. John
Wiley and Sons, New York.

Wu, C. F. J. (1986). Jackknife, bootstrap and other resampling methods in
regression analysis. *The Annals of Statistics*, **14**, 12611295.

Zellner, A. (1962). An efficient method for estimating seemingly unrelated
regressions and tests for aggregation bias. *Journal
of the American Statistical Association*, **57**, 348368.

Zucconi, F., Pera, A., Forte, M., and De Bertoldi, M. (1981). Evaluating
toxicity of immature compost. *Biocycle*,
**22**, 5457.